Introduction

Computer Vision Fall 2018 Columbia University

Cameras everywhere

Also scary times

The New York Times

Facial Recognition Is Accurate, if You're a White Guy

By Steve Lohr

Feb. 9, 2018

Facial recognition technology is improving by leaps and bounds. Some commercial software can now tell the gender of a person in a photograph.

When the person in the photo is a white man, the software is right 99 percent of the time.

But the darker the skin, the more errors arise — up to nearly 35 percent for images of darker skinned women, according to a new study that breaks fresh ground by measuring how the technology works on people of different races and gender.

What is vision?

"What does it mean, to see? The plain man's answer (and Aristotle's, too) would be, to know what is where by looking."

- David Marr, 1982

1945 - 1980 (35 years old)

Computational Photography

Biometrics

- "the most recognized photograph" in the history of the National Geographic magazine
- No one knew her identity...

1984

Biometrics

Optical Character Recognition

Security and Tracking

"The work was painstaking and mind-numbing: One agent watched the same segment of video 400 times. The goal was to construct a timeline of images, following possible suspects as they moved along the sidewalks. It took a couple of days" Washington Post

Health

Gaming

Shopping

Special Effects

Visual Search

Self-driving Cars

Space Exploration

Augmented Reality

Worldwide Insight

Walmart in Wichita, Kansas

What is vision?

Image Formation

Object

Film

Image Formation

Add a barrier to block off most of the rays

Representing Digital Images

234	7	89	7	98	98	7	9	7	5
43	7	0	123	4	13	454	23	5	87
67	5	76	4	3	56	67	87	65	45
97	0	6	3	6	25	7	3	587	8
78	5	54	7	876	71	54	76	9	75
45	81	67	78	78	5	4	75	86	8
5	4	3	35	8	256	6	4	3	36
7	6	64	3	4	7	77	76	4	54
64	35	46	46	64	56	7	56	4	7
75	464	576	75	75	75	57	64	75	75

Representing Digital Images

Representing Color Images

Color images, RGB color space

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Illumination

"Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied." — Tesla Company Blog

Occlusion

René Magritte, 1957

Class Variation

Clutter and Camouflage

Color

Motion

III-posed Problem

III-posed Problem

III-posed Problem

Cambrian Explosion

Time

Cambrian Explosion

how VISION sparked the big bang of evolution

"The Cambrian Explosion is triggered by the sudden evolution of vision," which set off an evolutionary arms race where animals either evolved or died. Andrew Parker

Evolution of Biological Eye

A quick experiment Animals or Not?

Thorpe, et al. Nature, 1996

Why not build a brain?

About 1/3rd of the brain is devoted to visual processing

Do we have the hardware?

10¹¹ parallel neurons

10⁸ serial transistors

We don't know the software

Illusionary Motion

Copyright A.Kitaoka 2003

Scale Ambiguity

The Ames Room

The Ames Room

Heider-Simmel Illusion

What objects are here?

Slide credit: Rob Fergus and Antonio Torralba

Context

Context

Tool 1: Physics and Geometry

Photo Tourism Exploring photo collections in 3D

Noah SnavelySteven M. SeitzRichard SzeliskiUniversity of WashingtonMicrosoft Research

SIGGRAPH 2006

Tool 2: Data and Learning

Two Extremes of Vision

Extrapolation problem

Generalization Diagnostic features Interpolation problem Correspondence

Finding the differences

Evolution of Vision Datasets

Course Information

Computer Vision Fall 2018 Columbia University

What about you?

- Major?
- Year?
- Research area?
Staff and Office Hours

Carl Vondrick

Office Hours: Monday 4:30pm to 5:30pm CSB 502 (temporary)

- TAs:
 - Oscar: TBA
 - Xiaoning: Monday, 5-6pm, CS TA Room
 - Bo: Tuesday, 3-4pm, CS TA Room
 - James: TBA
 - Luc: TBA

FAQ: Can you add me?

- We're at capacity: 110 people enrolled
- 200 people on wait list
- If you don't plan to take class, please drop soon

FAQ: Do I need to know C?

- No. The problem sets will use **Python**.
- Familiarity with linear algebra and calculus will be helpful but not required.

FAQ: How to contact you?

- No emails please use **Piazza**
- You can send private messages on Piazza
- Course staff goes offline 7pm to 10am and weekends

#	Date	Торіс	Reading	Assignments		
1	Sep 5	Introduction				
Image Processing						
2	Sep 10	Image Processing I		HW1 Out		
3	Sep 12	Image Processing II				
Cameras and Physics						
4	Sep 17	Image Formation				
5	Sep 19	Image Sensing				
6	Sep 24	Radiometry and Reflectance		HW1 Due, HW2 Out		
Recognition and Matching						
7	Sep 26	Grouping: Edges and Boundaries				
8	Oct 1	Image Alignment and Stitching				
9	Oct 3	2D Recognition using SIFT				
10	Oct 8	Learning-based Vision I		HW2 Due, HW3 Out		
11	Oct 10	Learning-based Vision II				
12	Oct 15	Object and Face Detection				
13	Oct 17	Image Segmentation				

3D Vision							
14	Oct 22	Photometric Stereo	HW3 Due, HW4 Out				
15	Oct 24	Shape from Shading					
16	Oct 29	Depth from Focus/Defocus					
17	Oct 31	Camera Calibration and Simple Stereo	Project Proposal Due				
-	Nov 5	Academic Holiday					
18	Nov 7	Uncalibrated Stereo	HW4 Due, HW5 Out				
Video							
19	Nov 12	Motion and Optical Flow					
20	Nov 14	Object Tracking					
21	Nov 19	Structure from Motion	HW5 Due				
-	Nov 21	Academic Holiday (Thanksgiving)					
Frontiers							
22	Nov 26	Vision, Sound, and Touch					
23	Nov 28	Unsupervised and Transfer Learning					
24	Dec 3	Bias and Ethics					
25	Dec 5	Project Presentations					
26	Dec 10	Project Presentations					

Grading

- 60% Problem Sets
- 40% Final Project
- No exams or quizzes

Problem Sets

- 5 problem sets, equally weighted
- Turn in via CourseWorks before class starts. Submit both PDF writeup and code online.
- One problem set may be a week late. No other extensions.
- Solutions available during TA office hours.
- Done individually, but you can have high-level discussion in pairs. Write up assignments individually

Final Project

- Individually or pairs (recommended)
- Final poster presentations: **Dec 5 and Dec 10**
- 4 page report in CVPR format
- Suggested projects and grading rubric to be announced

Academic Honesty

- Academic dishonesty may result in...
 - You fail course.
 - We refer your case to the Dean's office.

Readings (Optional)

http://szeliski.org/Book/

Welcome to the Web site (http://szeliski.org/Book) for my computer vision textbook, which you can now purchase at a variety of locations, including Springer (SpringerLink, DOI), Amazon, and Barnes & Nuble. The book is also available in Chinese and Japanese (translated by Prof. Toru Tarnaki).

This book is largely based on the computer vision courses that I have co-taught at the University of Washington (2008, 2005, 2001) and Stanford (2003) with Steve Seitz and David Fleet.

You are welcome to download the PDF from this Web site for personal use, but not to repost it on any other Web site. Please post a link to this URL (<u>http://szeliski.org/Book</u>) instead. An electronic version of this manuscript will continue to be available even after the book is published. Note, however, that while the content of the electronic and hardcopy versions are the same, the page layout (pagination) is different, since the electronic version is optimized for online reading.

The PDFs should be enabled for commenting directly in your viewer. Also, hyper-links to sections, equations, and references are enabled. To get back to where you were, use Alt-Left-Arrow in Acrobat.

If you have any comments or feedback on the book, please send me e-mail.

This Web site will also eventually contain supplementary materials for the textbook, such as figures and images from the book, slides sets, pointers to software, and a bibliography.

New Course

- Feedback appreciated.
- Please let us know if something works or not!

Deep Learning to Learn

SEPT. 10, 2018 (MONDAY) 11:30AM-12:30PM DAVIS AUDITORIUM (412 CEPSR)

Pieter Abbeel (UC Berkeley)

Next Class: Linear Filters

