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Homeworks

• Homework 1 grades back


• Median 37/40, Std 3.6


• Homework 2 due a few minutes ago


• Homework 3 out today


• Due October 22nd



Project
• Project Proposals due October 31


• Pick one of our suggested projects, or pitch your own


• Must use something in this course


• Groups of 2 strongly recommended


• We’ll give you Google Cloud credits once you turn in your 
project proposal


• Details here: http://w4731.cs.columbia.edu/project



We need translation invariance
Slide credit: Antonio Torralba



Lots of useful linear filters…

And many more…

Gaussian
Gaussian derivative

Laplacian

Gabor

High order Gaussian derivatives
Slide credit: Antonio Torralba



We need translation and scale invariance
Slide credit: Antonio Torralba



Lots of image pyramids…

Gaussian Pyr Laplacian Pyr

And many more: QMF, steerable, …

Slide credit: Antonio Torralba



We need …
Slide credit: Antonio Torralba



What is the best representation?

• All the previous representation are manually 
constructed. 

• Could they be learnt from data?

Slide credit: Antonio Torralba



A brief history of Neural Networks

time

enthusiasm

Slide credit: Antonio Torralba



Where did this all start?

Hubel+&+Wiesel+(1962)
Insights'about'early'image'processing'in'the'brain.
!Simple'cells'detect'local'features

!Complex'cells'pool'local'features'in'a'retinotopicneighborhood

Slide credit: Deva Ramanan



The+perceptron

Supervised'learning'of'the'weights'! using'the'Perceptron'algorithm.

Linear'threshold'unit

The+perceptron+is+a+machine

Frank'Rosenblatt

Slide credit: Deva Ramanan



Perceptrons,
1958

time

enthusiasm

Slide credit: Antonio Torralba



Percepton
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Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates
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If input features are binary, can model logical “and”s and “or”s

Slide credit: Deva Ramanan



What about “xors”?

Slide credit: Deva Ramanan
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Minsky and Papert, Perceptrons, 1972

Slide credit: Antonio Torralba



Perceptrons,
1958

Minsky and Papert,
1972 time

enthusiasm

Slide credit: Antonio Torralba



Parallel Distributed Processing (PDP), 1986
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Slide credit: Antonio Torralba



• 1612

XOR problem

15

Inputs Output

0       0                          0
1       0                          1
0       1                          1
1       1                          0

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained.  Among the functions that a multi-layer network can 
represent but a single-layer network cannot:  the XOR function.
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Slide credit: Antonio Torralba



Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

time

enthusiasm

Slide credit: Antonio Torralba



LeCun conv nets, 1998

17
http://yann.lecun.com/exdb/lenet/index.html
Demos:

Slide credit: Antonio Torralba
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Slide credit: Antonio Torralba



19http://pub.clement.farabet.net/ecvw09.pdf

Neural networks to 
recognize handwritten 
digits?  yes

Neural networks for 
tougher problems?  
not really

Slide credit: Antonio Torralba



NIPS 2000

• NIPS,  Neural Information Processing 
Systems, is the premier conference on 
machine learning.  Evolved from an 
interdisciplinary conference to a machine 
learning conference.

• For the NIPS 2000 conference: 
– title words predictive of paper acceptance:  

“Belief Propagation” and “Gaussian”.
– title words predictive of paper rejection:  

“Neural” and “Network”.
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Slide credit: Antonio Torralba



Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

Slide credit: Antonio Torralba
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Krizhevsky, Sutskever, and Hinton, NIPS 2012

Slide credit: Antonio Torralba



Slide from Rob Fergus, NYU



Krizhevsky, Sutskever, and Hinton, NIPS 2012

24

Slide credit: Antonio Torralba
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Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012
Slide credit: Antonio Torralba



Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky, 
Sutskever,
Hinton, 2012

time

enthusiasm

Slide credit: Antonio Torralba



Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky, 
Sutskever,
Hinton, 2012

time

enthusiasm

Geoff Hinton’s 
citations

28 years 28 years

Slide credit: Antonio Torralba



What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky, 
Sutskever,
Hinton, 2012

2028 ?

Slide credit: Antonio Torralba



http://www.deeplearningbook.org/

By Ian Goodfellow, Yoshua Bengio
and Aaron Courville

November 2016



“Classical” Recognition

14 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Classical Recognition

LeCun

Slide credit: LeCun



15 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

End-to-End?

LeCun

End-to-end

Slide credit: LeCun



16 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit: LeCun

End-to-End?End-to-end

Slide credit: LeCun



Artificial Neural Networks

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

Slide credit: Andrej Karpathy



Artificial Neural Networks

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

xi+1 = f (Wixi + bi)

xi ∈ ℝH×1

Wi ∈ ℝD×H

bi ∈ ℝD×1

x1 x2



19 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit: Li, Karpathy, Johnson

sigmoid activation 

function

Inspiration

Bio/Artificial Neurons

Slide credit: Andrej Karpathy



18 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Inspiration

LeCun

Bio/Artificial Networks

Slide credit: LeCun



Artificial Neural Networks

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

xi+1 = f (Wixi + bi)

xi ∈ ℝH×1

Wi ∈ ℝD×H

bi ∈ ℝD×1

x1 x2

How do we find W and b?





Bedrooms

Kitchens

Beaches Forests

Pools

Theatres

Park

Playroom





Loss Functions

min
θ ∑

i

ℒ (f(xi; θ), yi)

xi
yi f(xi; θ)

θInput (image)

Target (labels)

Parameters

Prediction

ℒ Loss Function

The objective

of learning:



Common Loss Functions

ℒ(x, y) = ∥x − y∥2
2

Squared error:

ℒ(x, y) = − ∑
i

yi log xi

Cross entropy:

ℒ(x, y) = max(0,1 − x ⋅ y)
Hinge loss:



Loss Surface

θ

ℒ



Loss Surface

θ

ℒ



Loss Surface

θ

ℒ
δℒ
δθ



Gradient Descent

θ

ℒ −
δℒ
δθ



Gradient Descent

θ

ℒ α
δℒ
δθ

α learning rate



Gradient Descent

θ

ℒ α
δℒ
δθ

α learning rate



Gradient Descent

θ

ℒ
α

δℒ
δθ

α learning rate



Gradient Descent

θ

ℒ

α
δℒ
δθ

α learning rate



Gradient Descent

θ

ℒ

Small learning rate:

slower progress



Gradient Descent

θ

ℒ

Large learning rate:

may jump over solution



Gradient Descent

θ

ℒ

Sometimes millions 

of dimensions

α
δℒ
δθ

Loss surface

likely not convex



Flavors of Gradient Descent

θt+1 = θt + α
δℒ
δθt

Gradient descent:

θt+1 = θt + αzt+1

Gradient descent with

momentum:

zt+1 = βzt +
δℒ
δθt

θt+1 = θt + α𝔼x [ δℒ
δθt ]

Stochastic gradient descent:



Are we done?

Wikipedia



min
θ ∑

i

ℒ (f(xi), yi) + λR(θ)

xi
yi f(xi; θ)

θInput (image)

Target (labels)

Parameters

Prediction

ℒ Loss Function

The objective

of learning:

ℛ Regularization

Regularization

R(θ) = ∥θ∥2
2

Common

regularization:



Artificial Neural Networks

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

xi+1 = f (Wixi + bi)

xi ∈ ℝH×1

Wi ∈ ℝD×H

bi ∈ ℝD×1

x1 x2

min
θ ∑

j

ℒ (xj
last, yj)How do we compute gradients?



Where we are headed
12 CHAPTER 2. CNN FUNDAMENTALS

x0 f1 f2 ... fL `y

w1 w2 wL

z 2 R
x1 x2 xL�1 xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`y � fL(·;wL) � ... � f2(·;w2) � f1(x0;w1)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`y(xL)

d(vecxL)>
d vec fL(xL�1;wL)

d(vecxL�1)>
. . .

d vec fl+1(xl;wl+1)

d(vecxl)>
d vec fl(xl�1;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x0 and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1)> are extremely large HlWlDl⇥Hl�1Wl�1Dl�1 matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

• Let xL be the output of the Lth layer. 
• We then apply a loss given a target label y 
• Ultimate goal: compute dz/dw

Simple application of chain rule from calculus. So what’s the “big deal”?
Slide credit: Deva Ramanan



Composable units

g(x0,w1, . . .) = fL(fL�1(fL�2(. . . ,wL�2),wL�1),wL)

= fL(·,wL) � fL�1(·,wL�1) . . .
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z 2 R
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a column vector. This notation for the derivatives is taken from [6] and is used throughout
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of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
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x f h z 2 R

w
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Here the function h lumps together all layers of the network from f to the scalar output z
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[Shorthand notation for composition that we’ll use in next slides]

Slide credit: Deva Ramanan



Review: Chain Rule

δ
δx [f ∘ g(x)] = f′�(g(x)) g′�(x)



Backprop

Given an input x0, evaluating the network is a simple matter of evaluating all the intermediate
stages in order to compute an overall function xL = f(x0;w1, . . . ,wL).

1.3 CNN derivatives

In training a CNN, we are often interested in taking the derivative of a loss ` : f(x,w) 7! R
with respect to the parameters. This e↵ectively amounts to extending the network with a
scalar block at the end:

x0 f1 f2 ... fL `

w1 w2 wL

z 2 R
x2 x3 xL�1 xL

The derivative of ` � f with respect to the parameters can be computed but starting from
the end of the chain (or DAG) and working backwards using the chain rule, a process also
known as back-propagation. For example the derivative w.r.t. wl is:

dz

d(vecwl)>
=

dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

d(vecwl)>
. (2)

Note that the derivatives are implicitly evaluated at the working point determined by the
input x0 during the evaluation of the network in the forward pass. The vec symbol is the
vectorization operator, which simply reshape its tensor argument to a column vector. This
notation for the derivatives is taken from [5] and is used throughout this document.

Computing (2) requires computing the derivative of each block xl = fl(xl�1,wl) with
respect to its parameters wl and input xl�1. Let us know focus on computing the derivatives
for one computational block. We can look at the network as follows:

` � fL(·,wL) � fL�1(·,wL�1) · · · � fl+1(·,wl+1)| {z }
z(·)

�fl(xl,wl) � . . .

where � denotes the composition of function. For simplicity, lump together the factors from
fl + 1 to the loss ` into a single scalar function z(·) and drop the subscript l from the first
block. Hence, the problem is to compute the derivative of (z � f)(x,w) 2 R with respect to
the data x and the parameters w. Graphically:

x f z(·) z

w

y

5
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Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:
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Slide credit: Deva Ramanan
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This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

We can add any functional module f so long as its interface provides:  
(1) derivative of output wrt to input 
(2) derivative of output wrt parameter Slide credit: Deva Ramanan



to run most of current state-of-the-art models for image classification. You are invited
to look at the implementation of this function, as it is a great starting point to under-
stand how to implement more complex CNNs.

• Example applications. MatConvNet provides several example of learning CNNs with
stochastic gradient descent and CPU or GPU, on MNIST, CIFAR10, and ImageNet
data.

• Pre-trained models. MatConvNet provides several state-of-the-art pre-trained CNN
models that can be used o↵-the-shelf, either to classify images or to produce image
encodings in the spirit of Ca↵e or DeCAF.

1.2 The structure and evaluation of CNNs

CNNs are obtained by connecting one or more computational blocks. Each block y = f(x,w)
takes an image x and a set of parameters w as input and produces a new image y as output.
An image is a real 4D array; the first two dimensions index spatial coordinates (image rows
and columns respectively), the third dimension feature channels (there can be any number),
and the last dimension image instances. A computational block f is therefore represented as
follows:

x f y

w

Formally, x is a 4D tensor stacking N 3D images

x 2 RH⇥W⇥D⇥N

where H and W are the height and width of the images, D its depth, and N the number of
images. In what follows, all operations are applied identically to each image in the stack x;
hence for simplicity we will drop the last dimension in the discussion (equivalent to assuming
N = 1), but the ability to operate on image batches is very important for e�ciency.

In general, a CNN can be obtained by connecting blocks in a directed acyclic graph (DAG).
In the simplest case, this graph reduces to a sequence of computational blocks (f1, f2, . . . , fL).
Let x1,x2, . . . ,xL be the output of each layer in the network, and let x0 denote the network
input. Each output xl depends on the previous output xl�1 through a function fl with
parameter wl as xl = fl(xl�1;wl); schematically:

x0 f1 f2 ... fL xL

w1 w2 wL

x2 x3 xL�1

4

@y

@w
@y

@x

What happens when x,y,w are vectors?

@y

@w
: needed to compute gradiant updates for this block

: needed to compute gradiant updates next block down stream

Slide credit: Deva Ramanan



Computational savings: 
cache intermediate gradients

Given an input x0, evaluating the network is a simple matter of evaluating all the intermediate
stages in order to compute an overall function xL = f(x0;w1, . . . ,wL).

1.3 CNN derivatives

In training a CNN, we are often interested in taking the derivative of a loss ` : f(x,w) 7! R
with respect to the parameters. This e↵ectively amounts to extending the network with a
scalar block at the end:

x0 f1 f2 ... fL `

w1 w2 wL

z 2 R
x2 x3 xL�1 xL

The derivative of ` � f with respect to the parameters can be computed but starting from
the end of the chain (or DAG) and working backwards using the chain rule, a process also
known as back-propagation. For example the derivative w.r.t. wl is:

dz

d(vecwl)>
=

dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

d(vecwl)>
. (2)

Note that the derivatives are implicitly evaluated at the working point determined by the
input x0 during the evaluation of the network in the forward pass. The vec symbol is the
vectorization operator, which simply reshape its tensor argument to a column vector. This
notation for the derivatives is taken from [5] and is used throughout this document.

Computing (2) requires computing the derivative of each block xl = fl(xl�1,wl) with
respect to its parameters wl and input xl�1. Let us know focus on computing the derivatives
for one computational block. We can look at the network as follows:

` � fL(·,wL) � fL�1(·,wL�1) · · · � fl+1(·,wl+1)| {z }
z(·)

�fl(xl,wl) � . . .

where � denotes the composition of function. For simplicity, lump together the factors from
fl + 1 to the loss ` into a single scalar function z(·) and drop the subscript l from the first
block. Hence, the problem is to compute the derivative of (z � f)(x,w) 2 R with respect to
the data x and the parameters w. Graphically:

x f z(·) z

w

y

5
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Artificial Neural Networks

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

xi+1 = f (Wixi + bi)

xi ∈ ℝH×1

Wi ∈ ℝD×H

bi ∈ ℝD×1

x1 x2

min
θ ∑

j

ℒ (xj
last, yj)



Non-linearities:	sigmoid
• Interpretation as firing rate of 
neuron

• Bounded between [0,1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0.5 
(poor conditioning)

• Not used in practice

Slide credit: Antonio Torralba



Non-linearities:	tanh
• Bounded between [-1,+1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) −1

Slide credit: Antonio Torralba



Non-linearities:	rectified	linear	(ReLU)
• Unbounded output (on positive side)

• Efficient to implement:

•Also seems to help convergence (see 
6x speedup vs tanh in [Krizhevsky et 
al.])

• Drawback: if strongly in negative 
region, unit is dead forever (no 
gradient).

• Default choice: widely used in 
current models. Slide credit: Antonio Torralba



Non-linearities:	Leaky	ReLU
• where α is small (e.g. 0.02)

• Efficient to implement:

•Also known as probabilistic ReLU
(PReLU)

• Has non-zero gradients everywhere 
(unlike ReLU)

• α can also be learned (see
Kaiming He et al. 2015).

Slide credit: Antonio Torralba



Multilayer Perceptron (MLP)

20 : COS429 : L19 : 28.11.17 : Andras Ferencz Slide Credit:

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or

“1-hidden-layer Neural Net”

“3-layer Neural Net”, or

“2-hidden-layer Neural Net”

Li, Karpathy, Johnson

xi+1 = f (Wixi + bi)

xi ∈ ℝH×1

Wi ∈ ℝD×H

bi ∈ ℝD×1

x1 x2

min
θ ∑

j

ℒ (xj
last, yj)



Convolutional NetworksOriginal of current networks

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Stack together convolution and pooling (avg + subsample) operations. 
Why can’t this be whole story?

Slide credit: Deva Ramanan



Convolutional Layer

w1
i ∈ ℝw×h×D

xi ∈ ℝW×H×D

*
xi+1 ∈ ℝW×H×1

=



w2
i ∈ ℝw×h×D

xi ∈ ℝW×H×D

*
xi+1 ∈ ℝW×H×1

=

Convolutional Layer



wk
i ∈ ℝw×h×D

xi ∈ ℝW×H×D

*
xi+1 ∈ ℝW×H×K

=

Convolutional Layer



A better visualization of AlexNet

224x224x3

55x55x96

27x27x256
13x13x384 13x13x25613x13x384

input

conv1

conv2

conv3 conv4 conv5

1x1x4096 1x1x4096 1x1x1000

“fc6” “fc7”

Red layers are followed by max pooling

output

Visualization hids the dimensions of the filters
Slide credit: Deva Ramanan



Max Pooling

Slide credit: Andrej Karpathy

Fast way to resize an “image”

What’s the derivative?



VGG19

All filter dimensions 3x3 except fc6 (which uses 7x7)

Slide credit: Deva Ramanan



Inception / resnet

Slide credit: Deva Ramanan
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And deeper... 
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And deeper... 



Get to know your units

96 Units in conv1

Slide credit: Antonio Torralba



Gabor	wavelets

u0=0 U0=0.1 U0=0.2

Slide credit: Antonio Torralba



Fourier	transform	of	a	Gabor	wavelet

U0=0.1

wy

wx

wy

wx
-u0 +u0

Slide credit: Antonio Torralba
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Interpretation: lamp

Interpretation: car

Top Activated Images

Unit 1

Unit 4

Top Activated Images

Slide credit: Bolei Zhou



conv5 unit 79 car (object) IoU=0.13

conv5 unit 107 road (object) 
IoU=0.15

Histogram of object detectors: Detector:81/256,  Unique 
Detector:40 (Units with IoU>0.04)

Slide credit: Bolei Zhou



 91

conv5 unit 144 mountain (object) IoU=0.13

conv5 unit 200 mountain (object) 
IoU=0.11

Histogram of object detectors: Detector:81/256,  Unique 
Detector:40 (Units with IoU>0.04)

Slide credit: Bolei Zhou
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Emergence of Interpretable Units during 
Training

Slide credit: Bolei Zhou



Deep ConvNet for Visual Recognition
2012: AlexNet 
5 conv. layers

Error: 15.3%

2014: VGG 
16 conv. layers

Error: 8.5%

2015: GoogLeNet 
22 conv. layers

Error: 7.8%

2016: ResNet 
>100 conv. layers

Error: 4.4%

What have been learned inside? 
How to compare the internal 
representations?

Slide credit: Bolei Zhou



Optimization
Appears to be a significant hurdle for training

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1 

 [c
s.C

V
]  

10
 D

ec
 2

01
5
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Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
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Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also
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greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
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VGG-19 34-layer plain
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Intuition: bias deep models to behave like shallow models during learning

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥23

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Batch normalization

max(0,x)conv(x,w)

(x-a)/b

a = mean(batch) 
b = var(batch)

Intuition: build second-order behaviour into SGD by normalizing variables 
(zero-mean, identity covariance) before nonlinearity

[Ioffe et al]

Many (if not most) contemporary networks make use of this Slide credit: Deva Ramanan



Drop-out regularization
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Intuition: we should really train a family of models with different architectures and average their predictions 
(c.f. model averaging from machine learning)

Practical implementation: learn a single “superset” architecture that randomly removes nodes  
(by randomly zero’ing out activations) during gradient updates

Slide credit: Deva Ramanan


