
Learning Based Vision II

Computer Vision
Fall 2018

Columbia University

Project
• Project Proposals due October 31

• Pick one of our suggested projects, or pitch your own

• Must use something in this course

• Groups of 2 strongly recommended

• If you want help finding a team, see post on Piazza

• We’ll give you Google Cloud credits once you turn in your project
proposal

• Details here: http://w4731.cs.columbia.edu/project

Neural Networks

A better visualization of AlexNet

224x224x3

55x55x96

27x27x256
13x13x384 13x13x25613x13x384

input

conv1

conv2

conv3 conv4 conv5

1x1x4096 1x1x4096 1x1x1000

“fc6” “fc7”

Red layers are followed by max pooling

output

Visualization hids the dimensions of the filters

Convolutional Network
(AlexNet)

Slide credit: Deva Ramanan

wk
i ∈ ℝw×h×D

xi ∈ ℝW×H×D

*
xi+1 ∈ ℝW×H×K

=

Convolutional Layer

Learning

min
θ ∑

i

ℒ (f(xi; θ), yi) + λ∥θ∥2
2

xi
yi f(xi; θ)

θInput (image)

Target (labels)

Parameters

Prediction

ℒ Loss Function

ℒ(z, y) = − ∑
j

yi log zi

Slide from Rob Fergus, NYU

Let’s break them

“school bus”

“school bus” “ostrich”

“school bus” “ostrich”

+ =

(scaled for
visualization)

Images on left are correctly classified

Images on the right are incorrectly classified as ostrich

How can we find these?

max
Δ

ℒ (f(x + Δ), y) − λ∥Δ∥2
2

Solve optimization problem to find minimal
change that maximizes the loss

99% confidence!

Nguyen, Deep Neural
Networks are Easily

Fooled: High Confidence
Predictions for

Unrecognizable Images

99% confidence!

Also 99% confidence!

Nguyen, Deep Neural
Networks are Easily

Fooled: High Confidence
Predictions for

Unrecognizable Images

Nguyen, Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images

Universal attacks

Moosave-Dezfooli et al. arXiv 1610.08401

Universal attacks
Attack is agnostic to the image content

Moosave-Dezfooli et al. arXiv 1610.08401

Change just one pixel

Su et al, “One pixel attack for fooling deep neural networks”

In the physical world

In the 3D physical world

Neural network camouflage

https://cvdazzle.com/

https://cvdazzle.com/

Which Pixels in the Input Affect
the Neuron the Most?
• Rephrased: which pixels would make the neuron

not turn on if they had been different?
• In other words, for which inputs is
𝜕𝑛𝑒𝑢𝑟𝑜𝑛

𝜕𝑥𝑖
large?

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

“Guided Backpropagation”

• Idea: neurons act like detectors of particular image
features

• We are only interested in what image features the
neuron detects, not in what kind of stuff it doesn’t
detect

• So when propagating the gradient, we set all the
negative gradients to 0

• We don’t care if a pixel “suppresses” a neuron
somewhere along the part to our neuron

Guided Backpropagation
Compute gradient,
zero out negatives,
backpropagate

Compute gradient,
zero out negatives,
backpropagate

Compute gradient,
zero out negatives,
backpropagate

Guided Backpropagation

Backprop Guided Backprop

Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

What About Doing Gradient Descent?

• What to maximize the i-th output of the softmax
• Can compute the gradient of the i-th output of the

softmax with respect to the input x (the W’s and b’s are
fixed to make classification as good as possible)

• Perform gradient descent on the input

Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)

ConvNet

Image

P(category)

ConvNet

Image

P(category)

What if we learn to generate

adversarial examples?

ConvNet P(category)

What if we learn to generate

adversarial examples?

ConvNetNoise

Generative Adversarial Networks
Goodfellow et al

D P(real)

GNoise

Generated images

Trained with CIFAR-10

Introduced a form of ConvNet more stable under adversarial training than
previous attempts.

Generator

Random uniform
vector (100 numbers)

Synthesized images

Transposed-convolution

Transposed-convolution

Convolution Transposed-convolution

Generated Images

Brock et al. Large scale GAN training for high
fidelity natural image synthesis

Image Interpolation

Image Interpolation

Nearest Neighbors

Nearest Neighbors

Generating Dynamics

Two components

conv1
conv2

conv3
conv4 conv5 fc6 fc7

Classification
layer

Generator

Network to visualize

car

Two components

conv1
conv2

conv3
conv4 conv5 fc6 fc7

Classification
layer

Generator

Network to visualize

Table lamp

Two components

Generator conv1
conv2

conv3
conv4 conv5 fc6 fc7

Classification
layer

Table lamp

Unit to visualize

Synthesizing Images Preferred by CNN

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks.". arXiv:1605.09304.

ImageNet-Alexnet-final units (class units)

Where to start training?

Gradient Descent

θ

ℒ α
δℒ
δθ

How to pick where to start?

Idea 0: Train many models

Drop-out regularization
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Intuition: we should really train a family of models with different architectures and average their predictions
(c.f. model averaging from machine learning)

Practical implementation: learn a single “superset” architecture that randomly removes nodes
(by randomly zero’ing out activations) during gradient updates

Slide credit: Deva Ramanan

Idea 1: Carefully pick
starting point

Backprop

Given an input x0, evaluating the network is a simple matter of evaluating all the intermediate
stages in order to compute an overall function xL = f(x0;w1, . . . ,wL).

1.3 CNN derivatives

In training a CNN, we are often interested in taking the derivative of a loss ` : f(x,w) 7! R
with respect to the parameters. This e↵ectively amounts to extending the network with a
scalar block at the end:

x0 f1 f2 ... fL `

w1 w2 wL

z 2 R
x2 x3 xL�1 xL

The derivative of ` � f with respect to the parameters can be computed but starting from
the end of the chain (or DAG) and working backwards using the chain rule, a process also
known as back-propagation. For example the derivative w.r.t. wl is:

dz

d(vecwl)>
=

dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

d(vecwl)>
. (2)

Note that the derivatives are implicitly evaluated at the working point determined by the
input x0 during the evaluation of the network in the forward pass. The vec symbol is the
vectorization operator, which simply reshape its tensor argument to a column vector. This
notation for the derivatives is taken from [5] and is used throughout this document.

Computing (2) requires computing the derivative of each block xl = fl(xl�1,wl) with
respect to its parameters wl and input xl�1. Let us know focus on computing the derivatives
for one computational block. We can look at the network as follows:

` � fL(·,wL) � fL�1(·,wL�1) · · · � fl+1(·,wl+1)| {z }
z(·)

�fl(xl,wl) � . . .

where � denotes the composition of function. For simplicity, lump together the factors from
fl + 1 to the loss ` into a single scalar function z(·) and drop the subscript l from the first
block. Hence, the problem is to compute the derivative of (z � f)(x,w) 2 R with respect to
the data x and the parameters w. Graphically:

x f z(·) z

w

y

5

12 CHAPTER 2. CNN FUNDAMENTALS

x0 f1 f2 ... fL `y

w1 w2 wL

z 2 R
x1 x2 xL�1 xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`y � fL(·;wL) � ... � f2(·;w2) � f1(x0;w1)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`y(xL)

d(vecxL)>
d vec fL(xL�1;wL)

d(vecxL�1)>
. . .

d vec fl+1(xl;wl+1)

d(vecxl)>
d vec fl(xl�1;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x0 and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1)> are extremely large HlWlDl⇥Hl�1Wl�1Dl�1 matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

12 CHAPTER 2. CNN FUNDAMENTALS

x0 f1 f2 ... fL `y

w1 w2 wL

z 2 R
x1 x2 xL�1 xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`y � fL(·;wL) � ... � f2(·;w2) � f1(x0;w1)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`y(xL)

d(vecxL)>
d vec fL(xL�1;wL)

d(vecxL�1)>
. . .

d vec fl+1(xl;wl+1)

d(vecxl)>
d vec fl(xl�1;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x0 and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1)> are extremely large HlWlDl⇥Hl�1Wl�1Dl�1 matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

We can add any functional module f so long as its interface provides:
(1) derivative of output wrt to input
(2) derivative of output wrt parameter Slide credit: Deva Ramanan

Idea 1: Carefully pick
starting point

He et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification

Exploding and
vanishing gradient

• How does the determinant of the gradients effect the final
gradient?

• What if the determinant is less than one?

• What if the determinant is greater than one?

Backprop

Given an input x0, evaluating the network is a simple matter of evaluating all the intermediate
stages in order to compute an overall function xL = f(x0;w1, . . . ,wL).

1.3 CNN derivatives

In training a CNN, we are often interested in taking the derivative of a loss ` : f(x,w) 7! R
with respect to the parameters. This e↵ectively amounts to extending the network with a
scalar block at the end:

x0 f1 f2 ... fL `

w1 w2 wL

z 2 R
x2 x3 xL�1 xL

The derivative of ` � f with respect to the parameters can be computed but starting from
the end of the chain (or DAG) and working backwards using the chain rule, a process also
known as back-propagation. For example the derivative w.r.t. wl is:

dz

d(vecwl)>
=

dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

d(vecwl)>
. (2)

Note that the derivatives are implicitly evaluated at the working point determined by the
input x0 during the evaluation of the network in the forward pass. The vec symbol is the
vectorization operator, which simply reshape its tensor argument to a column vector. This
notation for the derivatives is taken from [5] and is used throughout this document.

Computing (2) requires computing the derivative of each block xl = fl(xl�1,wl) with
respect to its parameters wl and input xl�1. Let us know focus on computing the derivatives
for one computational block. We can look at the network as follows:

` � fL(·,wL) � fL�1(·,wL�1) · · · � fl+1(·,wl+1)| {z }
z(·)

�fl(xl,wl) � . . .

where � denotes the composition of function. For simplicity, lump together the factors from
fl + 1 to the loss ` into a single scalar function z(·) and drop the subscript l from the first
block. Hence, the problem is to compute the derivative of (z � f)(x,w) 2 R with respect to
the data x and the parameters w. Graphically:

x f z(·) z

w

y

5

12 CHAPTER 2. CNN FUNDAMENTALS

x0 f1 f2 ... fL `y

w1 w2 wL

z 2 R
x1 x2 xL�1 xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`y � fL(·;wL) � ... � f2(·;w2) � f1(x0;w1)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`y(xL)

d(vecxL)>
d vec fL(xL�1;wL)

d(vecxL�1)>
. . .

d vec fl+1(xl;wl+1)

d(vecxl)>
d vec fl(xl�1;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x0 and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1)> are extremely large HlWlDl⇥Hl�1Wl�1Dl�1 matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

12 CHAPTER 2. CNN FUNDAMENTALS

x0 f1 f2 ... fL `y

w1 w2 wL

z 2 R
x1 x2 xL�1 xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`y � fL(·;wL) � ... � f2(·;w2) � f1(x0;w1)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`y(xL)

d(vecxL)>
d vec fL(xL�1;wL)

d(vecxL�1)>
. . .

d vec fl+1(xl;wl+1)

d(vecxl)>
d vec fl(xl�1;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x0 and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1)> are extremely large HlWlDl⇥Hl�1Wl�1Dl�1 matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

We can add any functional module f so long as its interface provides:
(1) derivative of output wrt to input
(2) derivative of output wrt parameter

Exploding and
vanishing gradient

Source: Roger Grosse

Initialization

• Key idea: initialization weights so that the variance of
activations is one at each layer

• You can derive what this should be for different layers and
nonlinearities

• For ReLU:

He et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification

wi ∼ 𝒩 (0,
2
k) bi = 0

Idea 2: How to maintain this
throughout training?

Batch NormalizationBatch Normalization (BN)

! "! = ! − %
& ' = ("! + *

• %: mean of ! in mini-batch
• &: std of ! in mini-batch
• (: scale
• *: shift

• %, &: functions of !,
analogous to responses

• (, *: parameters to be learned,
analogous to weights

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

Batch NormalizationBatch Normalization (BN)

2 modes of BN:
• Train mode:
• !, " are functions of a batch of #

• Test mode:
• !, " are pre-computed on training set

Caution: make sure your
BN usage is correct!
(this causes many of my bugs in
my research experience!)

$# = # − !
" ' = ($# + *

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

Batch NormalizationBatch Normalization (BN)

Figure credit: Ioffe & Szegedy

w/o BNw/ BN

ac
cu

ra
cy

iter.

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

Back to breaking things…

Architecture of Krizhevsky et al.

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Remove top fully
connected layer
– Layer 7

• Drop 16 million
parameters

• Only 1.1% drop in
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Remove both fully connected
layers
– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers:
– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

àDepth of network is key
Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Optimization
Appears to be a significant hurdle for training

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)
te

st
 e

rr
or

 (%
)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

What should happen if I train a deeper network?

Optimization
Appears to be a significant hurdle for training

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)
te

st
 e

rr
or

 (%
)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

What should happen if I train a deeper network?

Simply stacking layers?

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

plain-20
plain-32
plain-44
plain-56

CIFAR-10

20-layer
32-layer
44-layer
56-layer

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

ImageNet-1000

34-layer

18-layer

• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets

solid: test/val
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

fc 1000

a shallower
model

(18 layers)

a deeper
counterpart
(34 layers)

7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

fc 1000

“extra”
layers

• Richer solution space

• A deeper model should not have higher
training error

• A solution by construction:
• original layers: copied from a

learned shallower model
• extra layers: set as identity
• at least the same training error

• Optimization difficulties: solvers cannot
find the solution when going deeper…

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Deep Residual Learning

• Plaint net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

any two
stacked layers

!

"(!)

weight layer

weight layer

relu

relu

" ! is any desired mapping,

hope the 2 weight layers fit "(!)

Deep Residual Learning

• ! " is a residual mapping w.r.t. identity

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

• If identity were optimal,
easy to set weights as 0

• If optimal mapping is closer to identity,
easier to find small fluctuations

weight layer

weight layer

relu

relu

"

" = ! " + "

identity
"

!(")

CIFAR-10 experiments

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

plain-20
plain-32
plain-44
plain-56

20-layer
32-layer
44-layer
56-layer

CIFAR-10 plain nets

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

ResNet-20
ResNet-32
ResNet-44
ResNet-56
ResNet-110

CIFAR-10 ResNets

56-layer
44-layer
32-layer
20-layer

110-layer

• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

solid: test
dashed: train

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ImageNet experiments

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

ImageNet plain nets ImageNet ResNets

solid: test
dashed: train

34-layer

18-layer

18-layer

34-layer

• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

How much data
do you need?

Systematic evaluation of CNN advances on the ImageNet

How much data
do you need?

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Next Class
Neural networks for visual recognition

