Learning Based Vision II

Computer Vision Fall 2018 Columbia University

Project

- Project Proposals due October 31
- Pick one of our suggested projects, or pitch your own
- Must use something in this course
- Groups of 2 strongly recommended
 - If you want help finding a team, see post on Piazza
- We'll give you Google Cloud credits once you turn in your project proposal
- Details here: http://w4731.cs.columbia.edu/project

Neural Networks

Convolutional Network (AlexNet)

Slide credit: Deva Ramanan

Convolutional Layer

 $x_{i+1} \in \mathbb{R}^{W \times H \times K}$

Learning

 $\min_{\theta} \sum_{i} \mathscr{L}\left(f(x_{i};\theta), y_{i}\right) + \lambda \|\theta\|_{2}^{2}$ $\mathscr{L}(z, y) = -\sum y_i \log z_i$

ImageNet Classification 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) 26.2% error

Let's break them

"school bus"

"school bus"

"ostrich"

"school bus"

(scaled for visualization)

"ostrich"

Images on left are correctly classified Images on the right are incorrectly classified as ostrich

Intriguing properties of neural networks

Christian Szegedy

Google Inc.

Wojciech Zaremba New York University

ty Google Inc.

Joan Bruna

New York University

Dumitru Erhan Google Inc. **Ian Goodfellow** University of Montreal **Rob Fergus** New York University Facebook Inc.

How can we find these?

Solve optimization problem to find minimal change that maximizes the loss

$$\max_{\Delta} \mathscr{L}\left(f(x + \Delta), y\right) - \lambda \|\Delta\|_2^2$$

99% confidence!

Nguyen, Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

99% confidence!

Also 99% confidence!

Nguyen, Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

parot	coffee pot	race car	sea
toucan	cup	racer	seashore
ocarina	coffee mug	sports car	pier
pinwheel	water jug	car wheel	sandbar
black panther	fly	red crayon	latte
mask	ground beetle	syringe	cup
mouse	fly	lipstick	CD player
loupe	rhinoceros beetle	maraca	stethoscope

Nguyen, Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

Universal attacks

(d) VGG-19

Moosave-Dezfooli et al. arXiv 1610.08401

Universal attacks

Attack is agnostic to the image content

wool

common newt

Indian elephant

carousel

Indian elephant

grey fox

three-toed sloth

African grey

macaw

macaw

Moosave-Dezfooli et al. arXiv 1610.08401

Change just one pixel

SHIP CAR(99.7%)

HORSE DOG(70.7%)

HORSE FROG(99.9%)

DEER AIRPLANE(85.3%

DOG CAT(75.5%)

BIRD FROG(86.5%)

CAR AIRPLANE(82.4%)

DEER
) DOG(86.4%)

CAT BIRD(66.2%)

Su et al, "One pixel attack for fooling deep neural networks"

In the physical world

Kurakin A., Goodfellow I., Bengio S., 2016

In the 3D physical world

Neural network camouflage

https://cvdazzle.com/

Which Pixels in the Input Affect the Neuron the Most?

- Rephrased: which pixels would make the neuron not turn on if they had been different?
- In other words, for which inputs is *dneuron*

 ∂x_i large?

Typical Gradient of a Neuron

- Visualize the gradient of a particular neuron with respect to the input x
- Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

"Guided Backpropagation"

- Idea: neurons act like detectors of particular image features
- We are only interested in what image features the neuron detects, not in what kind of stuff it *doesn't* detect
- So when propagating the gradient, we set all the negative gradients to 0
 - We don't care if a pixel "suppresses" a neuron somewhere along the part to our neuron

Guided Backpropagation

Guided Backpropagation

Backprop

Guided Backprop

Guided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

What About Doing Gradient Descent?

- What to maximize the i-th output of the softmax
- Can compute the gradient of the i-th output of the softmax with respect to the *input x* (the W's and b's are fixed to make classification as good as possible)
- Perform gradient descent on the *input*

Flamingo

Ground Beetle

Pelican

Hartebeest

Billiard Table

Indian Cobra

Station Wagon

Black Swan

Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)

What if we learn to generate adversarial examples?

What if we learn to generate adversarial examples?

Generative Adversarial Networks

Goodfellow et al

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

Generated images

Trained with CIFAR-10

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz

indico Research
Boston, MA
{alec, luke}@indico.io

Soumith Chintala Facebook AI Research New York, NY soumith@fb.com

Introduced a form of ConvNet more stable under adversarial training than previous attempts.

Random uniform vector (100 numbers)

Synthesized images

Transposed-convolution

Transposed-convolution

Convolution

Transposed-convolution

Generated Images

Brock et al. Large scale GAN training for high fidelity natural image synthesis

Image Interpolation

Image Interpolation

Nearest Neighbors

Nearest Neighbors

Generating Dynamics

Synthesizing the preferred inputs for neurons in neural networks via deep generator networks

Anh Nguyen anguyen8@uwyo.edu Alexey Dosovitskiy dosovits@cs.uni-freiburg.de

Jason Yosinski jason@geometricintelligence.com Thomas Brox brox@cs.uni-freiburg.de

Jeff Clune jeffclune@uwyo.edu

Two components

3

Network to visualize

Two components

Two components

Synthesizing Images Preferred by CNN

ImageNet-Alexnet-final units (class units)

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks.". arXiv:1605.09304.

Where to start training?

Gradient Descent

How to pick where to start?

Idea 0: Train many models

Drop-out regularization

Intuition: we should really train a family of models with different architectures and average their predictions (c.f. model averaging from machine learning)

Practical implementation: learn a single "superset" architecture that randomly removes nodes (by randomly zero'ing out activations) during gradient updates

Slide credit: Deva Ramanan

Idea 1: Carefully pick starting point

$$\frac{dz}{d\mathbf{w}_l} = \frac{d}{d\mathbf{w}_l} \left[\ell_{\mathbf{y}} \circ f_L(\cdot; \mathbf{w}_L) \circ \dots \circ f_2(\cdot; \mathbf{w}_2) \circ f_1(\mathbf{x}_0; \mathbf{w}_1) \right]$$

$$\frac{dz}{d\mathbf{w}_l} = \frac{dz}{d(\operatorname{vec} \mathbf{x}_L)^{\top}} \frac{d\operatorname{vec} \mathbf{x}_L}{d(\operatorname{vec} \mathbf{x}_{L-1})^{\top}} \dots \frac{d\operatorname{vec} \mathbf{x}_{l+1}}{d(\operatorname{vec} \mathbf{x}_l)^{\top}} \frac{d\operatorname{vec} \mathbf{x}_l}{d\mathbf{w}_l^{\top}}$$

Slide credit: Deva Ramanan

Idea 1: Carefully pick starting point

Figure 3. The convergence of a **30-layer** small model (see the main text). We use ReLU as the activation for both cases. Our initialization (red) is able to make it converge. But "*Xavier*" (blue) [7] completely stalls - we also verify that its gradients are all diminishing. It does not converge even given more epochs.

He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Exploding and vanishing gradient

- How does the determinant of the gradients effect the final gradient?
 - What if the determinant is less than one?
 - What if the determinant is greater than one?

$$\frac{dz}{d\mathbf{w}_l} = \frac{dz}{d(\operatorname{vec} \mathbf{x}_L)^{\top}} \frac{d\operatorname{vec} \mathbf{x}_L}{d(\operatorname{vec} \mathbf{x}_{L-1})^{\top}} \cdots \frac{d\operatorname{vec} \mathbf{x}_{l+1}}{d(\operatorname{vec} \mathbf{x}_l)^{\top}} \frac{d\operatorname{vec} \mathbf{x}_l}{d\mathbf{w}_l^{\top}}$$

Exploding and vanishing gradient

Figure 2: Iterations of the function f(x) = 3.5 x (1 - x).

Initialization

- Key idea: initialization weights so that the variance of activations is one at each layer
- You can derive what this should be for different layers and nonlinearities

• For ReLU:
$$w_i \sim \mathcal{N}\left(0, \frac{2}{k}\right)$$
 $b_i = 0$

He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Idea 2: How to maintain this throughout training?

Batch Normalization

$$x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

- μ : mean of x in mini-batch
- σ : std of x in mini-batch
- γ : scale
- β : shift

- μ , σ : functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

Batch Normalization

$$x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

- 2 modes of BN:
- Train mode:
 - μ, σ are functions of a batch of x
- Test mode:
 - μ , σ are pre-computed on training set

Caution: make sure your BN usage is correct! (this causes many of my bugs in my research experience!)

Ioffe & Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML 2015

Batch Normalization

Figure credit: Ioffe & Szegedy

Ioffe & Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML 2015

Back to breaking things...
- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error

- Remove top fully connected layer
 Layer 7
- Drop 16 million parameters
- Only 1.1% drop in performance!

- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance

- Now try removing upper feature extractor layers:
 - Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance

Softmax Output

Layer 5: Conv + Pool

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Input Image

- Now try removing upper feature extractor layers & fully connected: – Layers 3, 4, 6,7
- Now only 4 layers
- 33.5% drop in performance

 \rightarrow Depth of network is key

What should happen if I train a deeper network?

What should happen if I train a deeper network?

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a shallower model (18 layers)

a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution *by construction*:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

• Plaint net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

How much data do you need?

Systematic evaluation of CNN advances on the ImageNet

How much data do you need?

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Next Class

Neural networks for visual recognition

