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Project

Project Proposals due October 31

Pick one of our suggested projects, or pitch your own
Must use something in this course

Groups of 2 strongly recommended

* If you want help finding a team, see post on Piazza

We’ll give you Google Cloud credits once you turn in your project
proposal

Details here: http://w4731.cs.columbia.edu/project



Neural Networks



Convolutional Network
(AlexNet)

input

conv3 conv4 convs

“fc6” “fc7” output
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13x13x384 13x13x384 13x13x256
27x27x256

55x55x96

Red layers are followed by max pooling

224x224x3 . .. . : :
recax Visualization hids the dimensions of the filters

Slide credit;: Deva Ramanan



Convolutional Layer

WxHXK
Xy € R



Learning

X;  Input (image) ) Parameters

yi Target (labels) f(xl-; 9) Prediction
fZ Loss Function
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ImageNet Classification 2012

» Krizhevsky et al. -- 16.4% error (top-5)

* Next best (non-convnet) — 26.2% error




Let’s break them



“school bus”



“school bus” “ostrich”



(scaled for
visualization)

“school bus” “ostrich”



Images on left are correctly classified
Images on the right are incorrectly classified as ostrich

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.



How can we find these?

Solve optimization problem to find minimal
change that maximizes the loss

mAachZ (f(x + A),Y) — A3



9% confidence!

centipede

peacock

jackfruit

bubble

Nguyen, Deep Neural
Networks are Easily
Fooled: High Confidence
Predictions for
Unrecognizable Images
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9% confidence!

Iso 99% confidence!

Nguyen, Deep Neural
Networks are Easily
Fooled: High Confidence
Predictions for

nrecognizable Images



parot coffee pot race car sea
toucan cup racer seashore
ocarina coffee mug sports car pier
pinwheel water jug car wheel sandbar
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black panther fly red crayon latte
mask ground beetle syringe cup
mouse fly lipstick CD player
R loupe rhinoceros beetle maraca stethoscope

Nguyen, Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images



Universal attacks

(d) VGG-19 (e) GoogleNet (f) ResNet-152

Moosave-Dezfooli et al. arXiv 1610.08401



Universal attacks

Attack is agnostic to the image content

[

African grey

African grey

wool

common newt carousel grey fox macaw three-toed sloth macaw

Moosave-Dezfooli et al. arXiv 1610.08401



Change just one pixel

7

DEER
AIRPLANE(85.3%

SHIP
CAR(99.7%)

HORSE DOG BIRD

DOG(70.7%) CAT(75.5%) FROG(86.5%)
CAR DEER CAT
AIRPLANE(82.4%) DOG(86.4%) BIRD(66.2%)

Su et al, “One pixel attack for fooling deep neural networks”



In the physical world

Aaversarial EXamples IR TaEePhysical Worrla
AUrAKIN A., Gooarellow l., BERIO S., Z01@



In the 3D physical world

Fooling Image
Recognition




Neural network camouflage

https://cvdazzle.com/



https://cvdazzle.com/

Which Pixels in the Input Affect
the Neuron the Most?

* Rephrased: which pixels would make the neuron
not turn on if they had been different?

* In other words, for which inputs is
dneuron

axi
large?



Typical Gradient of a Neuron

* Visualize the gradient of a particular neuron with respect to the
Input x

* Do a forward pass:

 Compute the gradient of a particular neuron using backprop:




“Guided Backpropagation”

* |dea: neurons act like detectors of particular image
features

* We are only interested in what image features the
neuron detects, not in what kind of stuff it doesn’t
detect

* So when propagating the gradient, we set all the
negative gradients to O

 We don’t care if a pixel “suppresses” a neuron
somewhere along the part to our neuron



Guided Backpropagation

Compute gradient,
zero out negatives,

backpropagate
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Guided Backpropagation




Guided Backpropagation

guided backpropagation

r—

B e
ol |

guided backpropagation ~_corresponding image crops

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)



What About Doing Gradient Descent?

 What to maximize the i-th output of the softmax
 Can compute the gradient of the i-th output of the
softmax with respect to the input x (the W’s and b’s are
fixed to make classification as good as possible)
 Perform gradient descent on the input



Flamingo Pelican Hartebeest Billiard Table
Ground Beetle Indian Cobra Station Wagon Black Swan

Yosinski et al, Understanding Neural Networks Through Deep Visualization (ICML 2015)
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Image



Image

What if we learn to generate
adversarial examples?



ConvNet

Noise mumly

P(category)

What if we learn to generate
adversarial examples?



Generative Adversarial Networks

Goodfellow et al

P(real)

mci;n max V(D,G) = Egpyu(a) l0g D(@)| + E.p, (2)log(1 — D(G(2)))]



Generated images

Trained with CIFAR-10



UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research

Boston, MA

{alec, luke}@indico.io

Soumith Chintala
Facebook AI Research
New York, NY

soumith@fb.com

Introduced a form of ConvNet more stable under adversarial training than
previous attempts.
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Synthesized images
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Transposed-convolution

Fw
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Project and reshape
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Transposed-convolution

Convolution Transposed-convolution



Generated Images
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Brock et al. Large scale GAN training for high
fidelity natural image synthesis




Image Interpolation




Image Interpolation




Nearest Neighbors




Nearest Neighbors
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ting Dynamics




Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks

Anh Nguyen Alexey Dosovitskiy
anguyen8Q@uwyo. edu dosovits@cs.uni-freiburg.de
Jason Yosinski Thomas Brox
jason@geometricintelligence.com broxQ@cs.uni-freiburg.de
Jeff Clune

jeffclune@uwyo.edu



Two components

Generator o

Stride 2

Network to visualize

Classification

fc6 fc7  |ayer

conv1



Two components

Generator

Stride 2 16 Stride 2

Project and reshape

CONV 2

CONV 4 -
[ | [ | G(Z)

Network tc 1alize

. X — Table lamp
—>
Classification

fc6 fc7

conv4 convd layer

conv3

conv2

conv1



Two components

2Table lamp




Synthesizing Images Preferred by CNN

ImageNet-Alexnet-final units (class units)

lipstick

cellphone aircraft carrier

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks.". arXiv:1605.09304.



Where to start training?



Gradient Descent

How to pick where to start?




ldea 0: Train many models



Drop-out regularization
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(a) Standard Neural Net (b) After applying dropout.

Intuition: we should really train a family of models with different architectures and average their predictions
(c.f. model averaging from machine learning)

Practical implementation: learn a single “superset” architecture that randomly removes nodes
(by randomly zero’ing out activations) during gradient updates
Slide credit: Deva Ramanan



ldea 1: Carefully pick
starting point



BacKkprop

X9 X3 XL-1 Xr,
Xo —— |1 Jo /o —— JL ¢ —=zeR

dz d
dWl dWl [é OfL( ) “'OfQ(.;WQ)Ofl(XO;Wl)]
dz dz dvecXry dvecx;, 1 dvecX;

dw;  d(veexp)Td(vecx,_1)T  d(vecx))T dw]

Slide credit;: Deva Ramanan



ldea 1: Carefully pick
starting point

1
Al — EﬁlVar[wl] =1 ours

| === AVar[w;] =1 Xavier

I I I I 1 L 1 1 L
0 1 2 3 4 5 6 7 8 9
Epoch

Figure 3. The convergence of a 30-layer small model (see the main
text). We use ReLLU as the activation for both cases. Our initial-
1zation (red) 1s able to make it converge. But “Xavier” (blue) [7]
completely stalls - we also verify that its gradients are all dimin-
ishing. It does not converge even given more epochs.

He et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification



Exploding and
vanishing gradient

* How does the determinant of the gradients effect the final
gradient?

e \What if the determinant is less than one?

 What if the determinant is greater than one?

dz dz dvecXry dvecx;, 1 dvecX;

dw;  d(veexp)Td(vecx,_1)T  d(vecx))T dw]



Exploding and
vanishing gradient

6 times

Figure 2: Iterations of the function f(z) = 3.5z (1 — x).

Source: Roger Grosse



Initialization

 Key idea: initialization weights so that the variance of
activations is one at each layer

* You can derive what this should be for different layers and
nonlinearities

2
e ForReLU: w;~W (092) b;=0

He et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification



ldea 2: How to maintain this
throughout training?



Batch Normalization

X — U .
X = X = - » y=yX+f
U: mean of X in mini-batch * U, 0: functions of X,
0: std of x in mini-batch analogous to responses
Y: scale * ¥, [: parameters to be learned,
[ shift analogous to weights

Iofte & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization

X =» X = . » y=yX+[

2 modes of BN:

e Train mode:

* U, 0 are functions of a batch of x Caution: make sure your

B 1s correct!
* Test mode: I\ usage 1s correct .
o (this causes many of my bugs in
¢ #, O arc pf@—COmputGd on tralﬂlﬁg sct my research eXpeﬂence!)

Iofte & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Batch Normalization

w/0 BN
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€ Steps to match Inception
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15M 20M 25M 30M  1tet.

Figure credit: Ioffe & Szegedy

Iofte & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015



Back to breaking things...



Architecture of Krizhevsky et al.

Softmax Output

* § layers total
Layer 7: Full

. L o: Full
* Trained on Imagenet WS

d&tﬂS@t [Deng et al. CVPR’O9] Layer 5: Conv + Pool

Layer 4: Conv

* 18.2% top-5 error

Layer 3: Conv

1 ' Layer 2: C Pool
* Our reimplementation: ayer 2: Conv + Poo

18.1% top-5 error Layer 1: Conv + Pool

I»I»I»I»I»I‘I‘I»I

Input Image



Architecture of Krizhevsky et al.

Softmax Output
* Remove top fully

connected layer
— Layer 7 Layer 6: Full

Layer 5: Conv + Pool

* Drop 16 million

Layer 4. Conv

parameters
Layer 3: Conv
° OIlly 1.1% dI'Op n Layer 2: Conv + Pool
performance!

Layer 1: Conv + Pool

| softmax Output__
|

 LeersiFl
X

| Layers:Conv 7ool_

e con

| Layer 3 con

| Loyer 2 Conv + Pool_
= F

| Loyer 1 Conv + Pool_
x

| nputimage

Input Image



Architecture of Krizhevsky et al.

Softmax Output

* Remove both fully connected
layers

— Layer 6 & 7

Layer 5: Conv + Pool

x

* Drop ~50 million parameters

2 P

Layer 3: Conv

x

* 5.7% drop in performance

" F

Layer 1. Conv + Pool

x

Input Image




Architecture of Krizhevsky et al.

Softmax Output

* Now try removing upper feature
extractor layers:

. Layers 3 & 4 Layer 6: Full

Layer 5: Conv + Pool

Layer 7: Full

* Drop ~1 million parameters

* 3.0% drop in performance
Layer 2: Conv + Pool

Layer 1. Conv + Pool

Input Image



Architecture of Krizhevsky et al.

Softmax Output

* Now try removing upper feature
extractor layers & fully connected:

— Layers 3,4, 6,7

Layer 5: Conv + Pool

* Now only 4 layers

* 33.5% drop in performance

Layer 2: Conv + Pool

- Depth of network is key

Layer 1. Conv + Pool

Input Image
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training error (%)

20¢

test error (%)

20-layer

20-layer

2 5 6 0 1 2

3 4 3 4
iter. (1e4) iter. (1e4)

What should happen if | train a deeper network?
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training error (%)

< S6-layer
S 1o 20-layer
56-layer 2
3
20-layer

2 5 6 0 1 2

3 4 3 4
iter. (1e4) iter. (1e4)

What should happen if | train a deeper network?



Simply stacking layers?

CIFAR-10 ImageNet-1000
20 V\. .
o\
56-layer '
44-layer 50
S 32-layer S . R
50 = FEANEAY 34-layer
% 20_|ayer % | S A y
.\/-’_/“/\'f .J‘A'\"/\A‘f':'
3 plain-20 30
plain-32] st 218
== plain- . . plain
—g}ain-gg solid: teSt/VaI — plain-34 18-Iayer
0 L L . L L . 20 L L L L
’ : ’ itei.(1e4) : > ¢ dashed: train 0 10 20 30 40 50

iter. (1e4)

* “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



7x7 conv, 64, /2

a shallower a deeper
model counterpart
(18 layers) (34 layers)

128, /2

* Richer solution space

A deeper model should not have higher
training error

* A solution by construction:
e original layers: copied from a
learned shallower model
* extra layers: set as identity
e atleast the same training error

* Optimization difficulties: solvers cannot
find the solution when going deeper...

[ i ]
Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Deep Residual Learning

* Plaint net H(x) is any desired mapping,

X l hope the 2 weight layers fit H(x)

weight layer
any two
stacked layers l relu

weight layer

relu
H(x) '

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Deep Residual Learning

* F(x) is a residual mapping w.r.t. identity

X

A 4

weight layer

F(x) lrelu

weight layer

H(x)=F(x)+x

 If identity were optimal,
easy to set weights as O
identity
X * If optimal mapping is closer to identity,
easier to find small fluctuations

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



CIFAR-10 experiments

CIFAR-10 plain nets

20
56-layer
: 44-layer
g i 32-layer
= 10 N e
£ \ SN 20-layer
Ay \o_A
3 plain-20) e N
plain-32) Vem [/ )
—_plain-44 ‘' solid: test
—plain-56 . . . . .
% i 2 3 4 s 5 dashed: train
iter. (1e4)

20

error (%)

CIFAR-10 ResNets

ResNet-20
ResNet-32
—=ResNet-44
=—ResNet-56
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 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

20-layer
32-layer
44-layer
56-layer
110-layer



ImageNet experiments

ImageNet plain nets

ImageNet ResNets

60 60F

50 sof
S S
5 40 34-layer 5 40 18-layer
15) / )

30 : o 30 e

plain-18 solid: test - ResNet-18 AN
— piain-34 dashed: train 18-layer o ZReNetsa] . . . 34-layer
% 10 20 30 20 50 0 10 20 30 40 50
iter. (1e4)

iter. (1e4)

 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



How much data
do you need?

60
50

40

Top-1 acc [%]

R
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10 | —eo— Make labels incorrect

—<— Remove images

() | | | | | |
0 200 400 600 800 1000 1200

Dataset size [K]

Systematic evaluation of CNN advances on the ImageNet



How much data
do you need?

0o Best state of the art 00 CNN off-the-shelf 00 CNN off-the-shelf + augmentation 00 Specialized CNN
100 ) -
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CNN Features off-the-shelf: an Astounding Baseline for Recognition



Next Class

Neural networks for visual recognition
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