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Discussion
1) What does it mean to 
understand this picture?

2) How to make software 
understand this picture?



Classification:

Is there a dog in this image?



Detection:

Where are the people?



Segmentation:

Where really are the people?



Attributes:

What features do objects have? 

furryplastic

soft

hard

sideways

45° rotation



Actions:

What are they doing?

sleeping
sitting 
playing sleeping



How many visual object categories are there?

Biederman 1987





Rapid scene catgorization
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Appears to suggest feed-forward computations suffice (or at least dominate)

People can distinguish high-level concepts (animal/transport) in under 150ms (Thorpe)



phrases that corresponded to different environments.2 We
typed each of these words or word phrases in the Google
image search engine. From the first few page(s) of search
results, we randomly selected 3–6 images that depicted
the keyword. The Google image search engine largely
returned images found on people’s personal websites,
most often taken with a snapshot camera. Although
everyone has a bias when taking a picture, we believe
that the large number of images from different unknown
sources would help average out these biases.
A number of authors have suggested that color

information is not critical for the rapid categorization of
scenes (Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001;
Fei-Fei et al., 2005). While color could be diagnostic in a
later stage of recognition (Oliva & Schyns, 2000), and
uncommon colors might even hinder rapid scene catego-
rization (Goffaux, Jacques, Mauraux, Oliva, Schynsand, &
Rossion, 2005), we are mostly concerned with the initial
evolution of scene perception. Thus, we decided to use only
grayscale versions of our images for our experiments. It will
be, however, interesting to compare our results with a
future study using colored images.

Experimental Stage I: Free recall
Subjects

Twenty-two highly motivated California Institute of
Technology students (from 18 to 35 years old) who were
proficient in English served as subjects in Experiment

Stage I. One author (A.I.) was among the subjects. All
subjects (including A.I.) were naive about the purpose of
the experiments until all data were collected.

Apparatus

Subjects were seated in a dark room especially designed
for psychophysics experiments. The seat was approxi-
mately 100 cm from a computer screen, connected to a
Macintosh (OS9) computer. The refresh rate of the
monitor was 75 Hz. All experimental software was
programmed using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) and MATLAB.

Procedure

Figure 3 illustrates a single trial of Stage I. An image
from our data set was presented for one of seven different
possible PTs: 27, 40, 53, 67, 80, 107, and 500 ms. For
each trial, the particular PT was randomly selected with
equal probability from these choices. The image was then
masked by one of eight natural image perceptual masks,
constructed by superposing white noise band-passed at
different spatial frequencies (Li et al., 2002; VanRullen, &
Koch, 2003). The subject was then shown a screen with
the words:

Please describe in detail what you see in the picture.
Two sample responses are: 1. City scene. I see a big
building on the right, and some people walking by

Figure 3. A single trial in Stage I: A fixation cross appeared for about 250 ms. An image from our data set was then presented at the
center, subtending 6- ! 8- in visual angle. After a variable PT, the image was masked by one of eight natural image perceptual masks (for
details of the mask, see Li et al., 2002). The time between the onset of the image and the onset of the mask is called the PT. The mask
was presented for 500 ms. Afterward, subjects were prompted to a screen in which they were asked to type in what they had seen of the
image. Subjects were given an unlimited amount of time to write down their responses. When they were ready to continue, they could
initiate the next trial by pressing the space bar.
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What do we perceive in a glance of a real-world scene?
Computer Science Department, Princeton University,

Princeton, NJ, USALi Fei-Fei

Division of Biological Sciences, California Institute of Technology,
Pasadena, CA, USAAsha Iyer

Division of Biological Sciences, California Institute of Technology,
Pasadena, CA, USAChristof Koch

Electrical Engineering Department, California Institute of Technology,
Pasadena, CA, USAPietro Perona

What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked
naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our
subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous
studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the
first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The
presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask
followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely
and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the
descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different
attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The
richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes
as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and
shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level
components of a scene, there is little evidence suggesting any bias toward either scene-level or object-level recognition.

Keywords: perception, natural scene, real-world scene, indoor, outdoor, sensory-level perception, segmentation,
object recognition, subordinate, entry level, superordinate, object categorization, scene categorization, event recognition,
free recall

Citation: Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal
of Vision, 7 (1):10, 1–29, http://journalofvision.org/7/1/10/, doi:10.1167/7.1.10.

Introduction

It is known that humans can understand a real-world scene
quickly and accurately, saccading many times per second
while scanning a complex scene. Each of these glances
carries considerable information. Filmmakers have long
exploited this ability through a technique called Bflash cut.[
In a commercial motion picture called The Pawnbroker
(Lumet, 1965), S. Lumet inserted an unusually brief scene
that represented a distant memory. Lumet found that a
presentation lasting a third of a second, although unexpected
and unrelated to the flow of the main narrative, was sufficient
for the audience to capture the meaning of the interposed
scene (Biederman, Teitelbaum, & Mezzanotte, 1983).
Pioneering studies extended these anecdotal findings.

Potter (1976) and Potter, Staub, Rado, and O’Connor
(2002) utilized rapid serial visual presentations of images
and revealed that subjects could perceive scene content in
less than 200 ms. Furthermore, Potter demonstrated that

although the semantic understanding of a scene is quickly
extracted, it requires a few hundred milliseconds to be
consolidated into memory (Potter, 1976). Later studies
documented limits to our perception of a scene. Rensink,
O’Regan, and Clark (1997) showed that changes to
retinotopically large portions of the scene will sometimes
go unobserved. It is likely that this occurs if the regions
are not linked to the scene’s overall Bmeaning.[
Other hallmark investigations attempted to elucidate the

information involved in this Boverall meaning[; their
conclusions regarding scene perception paralleled con-
cepts in auditory studies of sentence and word compre-
hension. Biederman et al. found that recognition of objects
is impaired when those objects are embedded in a randomly
jumbled rather than a coherent scene (Biederman, 1972).
They identified several physical (support, interposition)
and semantic (probability, position, size) constraints that
objects must satisfy within a scene, similar to the syntactic
and grammatical rules of language (Biederman, 1982).
They investigated how object recognition was modulated
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accurate measured the Bdegree[ to which the attribute was
perceived in this image. This initial score thus reflected a
particular image, PT, and scorer. The scores were then
normalized: The seven scores for a given image (one for
each PT) were divided by the highest score achieved for
that image (across all PTs). All evaluation scores were
therefore between 0 and 1. Due to this Bwithin-image[
normalization, inherent differences in Bdifficulty[ of
perceiving or understanding scenes between different
images were eliminated.
These scores were then utilized in three general kinds of

analyses, depending on the issues we were interested in
exploring. Most questions we asked fall into the realm of
characterizing the content of subject’s perception. Hence,
in the first type of analysis, the evaluation scores were
further averaged over images so that the averaged evalua-
tion score represented the degree to which the attribute was
perceived at a given PT across the entire image set.
Finally, the scores were averaged over all five scorers.

Because this is the primary analysis employed, we
will focus on the evaluation of one attribute, building, to
better illustrate the parameters just discussed (depicted in
Figure 6).
On the x-axis are the seven PTs for which images were

displayed. The y-axis reflects normalized accuracy evalu-
ation score. For the PT of 80 ms, for example, each scorer
sees roughly three responses for each image. For each
response, the scorer determines whether the attribute
building was accurately reported with respect to the
corresponding image (the other 104 attributes were also
checked, but we will not follow those for the purposes of
this example.) Suppose that the scorer indicates that
building was described accurately in only one response.
The initial evaluation score for the attribute building for
this image at PT 80 ms is therefore 1/3 or 0.33. Suppose
also that the maximum accuracy score achieved in
describing this image occurred at PT 500 ms, where two
thirds of the responses accurately reported a building. This
maximum score of 0.67 would be used to normalize all
scores so that the evaluation score PT 80 ms is now 0.5
and the score at 500 ms is 1.0. This normalization allows
each image to be its own baseline; therefore, differences in
the quality of the image (i.e., simple vs. cluttered, see
Figure 7) will not affect scores. Finally, all normalized
building scores at PT 80 msVone for each imageVare
averaged to obtain the final evaluation score at this PT for
this particular scorer.
This process of normalization per image and then

averaging over all images is done for each PT. Again,
the resulting values are per scorer. Thus, in Figure 6, the
yellow, blue, green, cyan, and magenta lines each
represent the normalized evaluation scores (averaged over
images) for one scorer. These curves are then averaged
over all the scorers. The resulting means are plotted in the
red line in Figure 6, with error bars representing standard
error of the mean.

Figure 6. A sample score plot for the building attribute.

 

 

Figure 7. Subject description samples. In the first row, the scene is relatively easy. Subjects are nearly as good at perceiving the details of
the scene at PT 107 ms compared to PT 500 ms. In the second row, the scene is more cluttered and complex.

Journal of Vision (2007) 7(1):10, 1–29 Fei-Fei, Iyer, Koch, & Perona 8

Should language be the right output?



Object recognition
Is it really so hard?

This is a chair

Find the chair in this image Output of normalized correlation



Object recognition
Is it really so hard?

My biggest concern while making this slide was:
how do I justify 50 years of research, and this course, if this experiment did work?

Find the chair in this image 

Pretty much garbage
Simple template matching is not going to make it
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Fei-Fei Li

Challenges:'viewpoint'varia/on'

Michelangelo 1475-1564 
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Fei-Fei Li

Challenges:'illumina/on'

image credit: J. Koenderink 

12ENovE15'19'



Lecture 16
 -  

Fei-Fei Li

Challenges:'scale'
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Challenges:'background'clu_er'

Kilmeny'Niland.'1995,,
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Within-class variations

Svetlana Lazebnik



Supervised Visual 
Recognition



Can we define a canonical list of objects, 
attributes, actions, materials….?

ImageNet (cf. WordNet, VerbNet, FrameNet,..)



Crowdsourcing



The value of data

The Large Hadron Collider
$ 10 10

Amazon Mechanical Turk
$ 10 2 - 10 4













Mechanical Turk

• von Kempelen, 1770.
• Robotic chess player.
• Clockwork routines.
• Magnetic induction (not vision)

• Toured the world; played 
Napoleon Bonaparte 
and Benjamin Franklin.



Mechanical Turk
• It was all a ruse!
• Ho ho ho.



Amazon Mechanical Turk
Artificial artificial intelligence.

Launched 2005. 
Small tasks, small pay.
Used extensively in data collection.

Image: Gizmodo



Beware of the human in your loop

• What do you know about them? 

• Will they do the work you pay 
for?

Let’s check a few simple experiments



Workers are given 1 cent to

randomly pick number between 1 and 10



People has biases…
Turkers were offered 1 cent to pick a 
number from 1 to 10. 

From http://groups.csail.mit.edu/uid/deneme/

~850 turkers

Experiment by Greg Little

Workers are given 1 cent to

randomly pick number between 1 and 10



Please choose one of the following:



Do humans have consistent biases?

Results form 100 HITS:

From http://groups.csail.mit.edu/uid/deneme/
Experiment by Greg Little

Please choose one of the following:



Please flip an actual coin and report the result



Do humans do what you ask for?

From http://groups.csail.mit.edu/uid/deneme/

31 heads, 19 tails

After 50 HITS:

34 heads, 16 tails

And 50 more:

Experiment by Rob Miller

Please flip an actual coin and report the result



Please click option B:
A

B

C



A:  2 
B:  96 
C:  2

Results of 100 HITS

Are humans reliable even in simple tasks?

From http://groups.csail.mit.edu/uid/deneme/
Experiment by Greg Little

Please click option B:
A

B

C



Let’s give it a try

When an object is not completely visible because there
is another one that hides it, then I write inside the object
name the word “occluded.” However, I do not always add
the word “occluded” to the object name. For instance,
when I see books or folders (as in the next picture) that are
in their natural place so that you only see the book spines,
I never write the word “occluded”. I do not use the word
“occluded” when these objects are occluded because that
is their natural way of appearing.

During the time that I have been doing image anno-
tations, I have encountered several interesting cases that
have made me think, rectify, and deduce what I was see-
ing. But once I decided to write this little article, many
of those anecdotes have disappeared from my mind and
I have only been able to explain the situations that I was
encountering since I started writing. But I do not discard
that I might continue adding new experiences that I will
continue collecting day after day.

When I was proposed to work with LabelMe, I found
the task interesting because it was something that I’d never
done before. The beginning was easy because the pictures
that I was given to label were very simple. They contained
very specific things that were easy to recognize. But, little
by little, the pictures they sent me became more and more
complex and suddenly nothing seemed easy. But when
you devote several hours a day to a job, you start mastering
it and the difficulty has to be very large in order to become
impossible to do. However, even after all my labeling
experience, I still find images that I do not know how to
annotate.

The next picture represents a big challenge. What is on
the right side?

I can see the ceiling, a wall and a ladder, but I do not
know how to annotate what is on the right side of the
picture. Maybe I just need to admit that I can not solve
this picture in an easy and fast way. But if I was forced
to label it then I would proceed as follows: I would start
ignoring the unfinished wall that will split the room and
I would extend the walls and ceiling. Then, at the end, I
would label the wood of the splitting wall in such a way
that the object mask will allow seeing what is behind, just
as in the picture. I have no idea about what is the object
that is in the frontal plane of this picture.

And this picture...

...it is such a mess that it seems the mind does not want
to make the fight to split every element. But, as it was
the case with the previous picture, it would be possible
to annotate the image if you found yourself with the duty
to do it. The true problem appears when one does not
recognize what an object is.

Notes on image annotation page 7 of 15

How do we annotate this?



Notes on image
annotation
Adela Barriuso, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology

We are under the illusion that seeing is effortless, but fre-

quently the visual system is lazy and makes us believe that

we understand something when in fact we don’t. Labeling

a picture forces us to become aware of the difficulties un-

derlying scene understanding. Suddenly, the act of seeing

is not effortless anymore. We have to make an effort in

order to understand parts of the picture that we neglected

at first glance.

In this report, an expert image annotator relates her ex-

perience on segmenting and labeling tens of thousands of

images. During this process, the notes she took try to high-

light the difficulties encountered, the solutions adopted,

and the decisions made in order to get a consistent set

of annotations. Those annotations constitute the SUN

database [7].

1 Forward by Antonio Torralba

Online games [5], Amazon Mechanical Turk [3], crowd-
sourcing and a variety of image annotation tools [2, 6]
have changed the way data is collected for computer vision
research. It would be common to find a student frantically
labeling images before a deadline, in order to build up a
dataset that would nevertheless be too small to conclude
anything reliable [4]. Those days seem behind us (or
are they?). With the prevalence of crowd-sourcing tools,
datasets are becoming larger and more ambitious.

Despite new crowd-sourcing tools allowing the creation

Figure 1: Example of annotated image using the LabelMe im-

age annotation tool.

of large datasets, it remains important to do some labeling
oneself. Labeling images is a good exercise for gaining in-
tuition about possible representations and the limits of the
task we are trying to solve. Labeling forces us to clearly
think about naming and categorization issues, how to repre-
sent occluded objects, how to deal with parts of the image
that are unrecognizable, when context becomes important
for recognition, what is the effect of our prior knowledge
and expertise about a particular visual domain, and how
do we deal with clearly visible objects whose name or
function is unknown to us. Where does the identity of an
object come from? Does the identity of an object come
from its features or from the surrounding objects and our
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Semantic blindspots

When an object is not completely visible because there
is another one that hides it, then I write inside the object
name the word “occluded.” However, I do not always add
the word “occluded” to the object name. For instance,
when I see books or folders (as in the next picture) that are
in their natural place so that you only see the book spines,
I never write the word “occluded”. I do not use the word
“occluded” when these objects are occluded because that
is their natural way of appearing.

During the time that I have been doing image anno-
tations, I have encountered several interesting cases that
have made me think, rectify, and deduce what I was see-
ing. But once I decided to write this little article, many
of those anecdotes have disappeared from my mind and
I have only been able to explain the situations that I was
encountering since I started writing. But I do not discard
that I might continue adding new experiences that I will
continue collecting day after day.

When I was proposed to work with LabelMe, I found
the task interesting because it was something that I’d never
done before. The beginning was easy because the pictures
that I was given to label were very simple. They contained
very specific things that were easy to recognize. But, little
by little, the pictures they sent me became more and more
complex and suddenly nothing seemed easy. But when
you devote several hours a day to a job, you start mastering
it and the difficulty has to be very large in order to become
impossible to do. However, even after all my labeling
experience, I still find images that I do not know how to
annotate.

The next picture represents a big challenge. What is on
the right side?

I can see the ceiling, a wall and a ladder, but I do not
know how to annotate what is on the right side of the
picture. Maybe I just need to admit that I can not solve
this picture in an easy and fast way. But if I was forced
to label it then I would proceed as follows: I would start
ignoring the unfinished wall that will split the room and
I would extend the walls and ceiling. Then, at the end, I
would label the wood of the splitting wall in such a way
that the object mask will allow seeing what is behind, just
as in the picture. I have no idea about what is the object
that is in the frontal plane of this picture.

And this picture...

...it is such a mess that it seems the mind does not want
to make the fight to split every element. But, as it was
the case with the previous picture, it would be possible
to annotate the image if you found yourself with the duty
to do it. The true problem appears when one does not
recognize what an object is.

Notes on image annotation page 7 of 15
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Jia Deng, Fei-Fei Li, and many collaborators



What is WordNet? 

Original paper by 
[George Miller, et 
al 1990] cited over 

5,000 times 

Organizes over 
150,000 words into 
117,000 categories 

called synsets. 

Establishes 
ontological and 

lexical relationships 
in NLP and related 

tasks. 



German shepherd: breed of 
large shepherd dogs used in 
police work and as a guide for the 
blind. 

microwave: kitchen appliance 
that cooks food by passing an 
electromagnetic wave through it. 

mountain: a land mass 
that projects well above its 
surroundings; higher than a 
hill. 

jacket: a short coat 

A massive ontology of 
images to transform 

computer vision 

Individually Illustrated 
WordNet Nodes 
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MAN-MADENATURALVERTEBRATE…..

MAMMALS BIRDS
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What’s wrong here?
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Normalize outputs to sum

to unity with softmax:

σ(z)j =
exp(zj)

∑K
k=1 exp(zk)
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yi log xi

Cross entropy loss:

Target Label

Follow gradient step

to lower loss:
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Question: How to localize where objects are?



How much data 
do you need?

Systematic evaluation of CNN advances on the ImageNet



How much data 
do you need?

CNN Features off-the-shelf: an Astounding Baseline for Recognition



Short cuts to AI

With billions of images on the web, it’s often possible to find a 
close nearest neighbor.

We can shortcut hard problems by “looking up” the answer, 
stealing the labels from our nearest neighbor.



Chinese Room experiment, John Searle (1980) 

Input to program is Chinese,

and output is also Chinese. It 
passes the Turing test.


Does the computer “understand” 
Chinese or just “simulate” it?


What if the software is just a 
lookup table?



History



Recognition as an alignment problem:
Block world

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

L. G. Roberts 
Machine Perception of 
Three Dimensional Solids,
Ph.D. thesis, MIT 
Department of Electrical 
Engineering, 1963.



ACRONYM (Brooks and Binford, 1981)

Representing and recognizing object categories is harder...

Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)



Object Recognition in the Geometric Era: 
a Retrospective. Joseph L. Mundy. 2006

Binford and generalized cylinders



Zisserman et al. (1995)

Generalized cylinders
Ponce et al. (1989)

Forsyth (2000)

General shape primitives?

Svetlana Lazebnik



Recognition by components

Primitives (geons) Objects

http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Biederman (1987)

Svetlana Lazebnik



Scenes and geons

Mezzanotte & Biederman 



Object
Bag of 
‘words’

Bag-of-features models

Svetlana Lazebnik



Origin 1: Bag-of-words models

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/

• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)



Origin 2: Texture recognition

• Characterized by repetition of basic elements or textons
• For stochastic textures, the identity of textons matters, 

not their spatial arrangement

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 2: Texture recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features models

Svetlana Lazebnik



Objects as texture
• All of these are treated as being the same

• No distinction between foreground and 
background: scene recognition?

Svetlana Lazebnik



1. Feature extraction
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary 
4. Represent images by frequencies of “visual words” 

Bag-of-features steps



1. Feature extraction

• Regular grid or interest regions



Extract patch

Detect patches

Compute 
descriptor

Slide credit: Josef Sivic

1. Feature extraction



…

1. Feature extraction

Slide credit: Josef Sivic



2. Learning the visual vocabulary

…

Slide credit: Josef Sivic



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic



3. Quantize the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

Visual vocabulary



Example codebook

…

Source: B. Leibe

Appearance codebook



Visual vocabularies: Issues
• How to choose vocabulary size?

• Too small: visual words not representative of all patches
• Too large: quantization artifacts, overfitting

• Computational efficiency
• Vocabulary trees 

(Nister & Stewenius, 2006)



But what about layout?

All of these images have the same color histogram



Spatial pyramid

Compute histogram in each spatial bin



Spatial pyramid representation
• Extension of a bag of features
• Locally orderless representation at several levels of resolution

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramid representation
• Extension of a bag of features
• Locally orderless representation at several levels of resolution

level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)



Spatial pyramid representation

level 0 level 1 level 2

• Extension of a bag of features
• Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)



Representation
• Object as set of parts

– Generative representation

• Model:
– Relative locations between parts
– Appearance of part

• Issues:
– How to model location
– How to represent appearance
– Sparse or dense (pixels or regions)
– How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]





Combines pictorial structures with machine learning



Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan



Scoring function

part template 
scores

spring deformation model

Score is linear in local templates wi and spring parameters wij

x = image 
zi = (xi,yi)
z = {z1,z2...}

Source: Deva Ramanan

score(x,z)  = Σ wi φ(x, zi) + Σ wij Ψ(zi, zj)  i i,j 

score(x,z)  =  w . Φ(x, z) 



Inference: max score(x,z)
Felzenszwalb & Huttenlocher 05 

z

Source: Deva Ramanan

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent

root

root



Latent SVMs

Given positive and negative training windows {xn}

pos neg

L(w) is “almost” convex

Source: Deva Ramanan



Latent SVMs

Given positive and negative training windows {xn}

L(w) is convex if we fix latent values for positives

pos neg

Source: Deva Ramanan



1) Given positive part locations, learn w with a convex program

The above steps perform coordinate descent on a joint loss 

2) Given w,  estimate part locations on positives 

Coordinate descent

Source: Deva Ramanan



Example models

Source: Deva Ramanan



Example models

Source: Deva Ramanan


