Stereo

Computer Vision
Fall 2018
Columbia University
Homework

- Homework 2 grades are back
 - Median 37/40, std 7.2
- Homework 3 due now
- Homework 4 out today
My Office Hours

• Now Mondays 5pm-6pm
Course Evaluations

• 60% response rate so far
• Please respond by tomorrow
• We read all feedback!
Image Stitching
Image alignment

Why don’t these image line up exactly?
Transformation Models

• Translation only

• Rigid body (translate+rotate)

• Similarity (translate+rotate+scale)

• Affine

• Homography (projective)
Camera Projection

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
r_{11} & r_{12} & r_{13} & t_x \\
r_{21} & r_{22} & r_{23} & t_y \\
r_{31} & r_{32} & r_{33} & t_x
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]

Camera Intrinsic
Camera Extrinsic
World Coordinates
Camera Matrix

Mapping points from the world to image coordinates is matrix multiplication in homogenous coordinates

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix}
=
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34}
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]
Projection of 3D Plane

All points on the plane have $Z = 0$

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
0 \\
1
\end{pmatrix}
\]
Projection of 3D Plane

All points on the plane have $Z = 0$

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} & 0 & C_{14} \\
C_{21} & C_{22} & 0 & C_{24} \\
C_{31} & C_{32} & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
0 \\
1
\end{pmatrix}
\]
Two-views of Plane

\[
\begin{pmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{pmatrix}
= H_1 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}
\]

\[
\begin{pmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{pmatrix}
= H_2 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}
\]

\[
\begin{pmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{pmatrix}
= H_2 H_1^{-1} \begin{pmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{pmatrix}
\]

Slide credit: Deva Ramanan
Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B using least squares on set of matches

What could go wrong?
Outliers

outliers

inliers

Slide credit: Noah Snavely
Robustness

- Let’s consider a simpler example... linear regression

Problem: Fit a line to these datapoints

- How can we fix this?

Slide credit: Noah Snavely
We need a better cost function...

• Suggestions?
Counting inliers
Counting inliers

Inliers: 3

Slide credit: Noah Snavely
Counting inliers

Inliers: 20

Slide credit: Noah Snavely
Idea

• Given a hypothesized line
• Count the number of points that “agree” with the line
 – “Agree” = within a small distance of the line
 – I.e., the inliers to that line

• For all possible lines, select the one with the largest number of inliers
How do we find the best line?

• Unlike least-squares, no simple closed-form solution

• Hypothesize-and-test
 – Try out many lines, keep the best one
 – Which lines?
Algorithm:

1. **Sample** (randomly) the number of points s required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays
RANSAC

1. **Sample** (randomly) the number of points required to fit the model (s=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model \((s=2)\)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC for alignment
RANSAC for alignment

Slide credit: Deva Ramanan
RANSAC for alignment
Implementing image warping

• Given a coordinate xform \((x',y') = T(x,y)\) and a source image \(f(x,y)\), how do we compute an xformed image \(g(x',y') = f(T(x,y))\)?
Forward Warping

• Send each pixel $f(x)$ to its corresponding location $(x',y') = T(x,y)$ in $g(x',y')$

• What if pixel lands “between” two pixels?
Inverse Warping

• Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x,y)$ in $f(x,y)$

• Requires taking the inverse of the transform

• What if pixel comes from “between” two pixels?
Inverse Warping

• Get each pixel $g(x')$ from its corresponding location $x' = h(x)$ in $f(x)$

• What if pixel comes from “between” two pixels?

• Answer: *resample* color value from *interpolated* (prefiltered) source image
Blending

• We’ve aligned the images – now what?

Slide credit: Noah Snavely
Blending

• Want to seamlessly blend them together
Image Blending
Feathering

Slide credit: Noah Snavely
Effect of window size

Slide credit: Noah Snavely
Effect of window size

Slide credit: Noah Snavely
Blending

Moving object, simple blending => blur
Blending

Instead of blending high frequencies along a straight line, blend along line of minimum differences in image intensities
Blending

Minimum-cost cut ⪆ no blur
Stereo
Stereo vision

~6cm

~50cm

Slide credit: Antonio Torralba
Why not put our second eye here?
Stereoscopes: A 19th Century Pastime
Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923
Teesta suspension bridge-Darjeeling, India
Mark Twain at Pool Table*, no date, UCR Museum of Photography
3D Movies

Jonas Brothers: The 3D Concert Experience

My Bloody Valentine 3D
Depth without objects
Random dot stereograms (Bela Julesz)

Julesz, 1971
Stereo

• Given two images from different viewpoints
 – How can we compute the depth of each point in the image?
 – Based on how much each pixel moves between the two images
Geometry for a simple stereo system

Similar triangles

Slide credit: Antonio Torralba
Geometry for a simple stereo system

Similar triangles

Slide credit: Antonio Torralba
Similar triangles:

\[
\frac{T + X_L - X_R}{Z - f} =
\]
Geometry for a simple stereo system

Similar triangles:

\[
\frac{T + X_L - X_R}{Z - f} = \frac{T}{Z}
\]
Geometry for a simple stereo system

Similar triangles:

\[
\frac{T + X_L - X_R}{Z - f} = \frac{T}{Z}
\]

Solving for Z:

\[
Z = f + \frac{T}{X_R - X_L}
\]

Disparity

Slide credit: Antonio Torralba
Epipolar geometry

Two images captured by a purely horizontal translating camera (rectified stereo pair)

\[x_2 - x_1 = \text{the disparity of pixel } (x_1, y_1) \]
Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image
 • compare with every pixel on same epipolar line in right image
 • pick pixel with minimum match cost

Improvement: match *windows*
Stereo matching based on SSD

Left

Right

scanline

SSD

Best matching disparity

d_{min}

d

Slide credit: Noah Snavely
Effect of window size
- Smaller window
 +
 - Larger window
 +

Better results with *adaptive window*

Slide credit: Noah Snavely
Stereo results

– Data from University of Tsukuba
– Similar results on other images without ground truth

Scene

Ground truth

Slide credit: Noah Snavely
Results with window search

Window-based matching (best window size) Ground truth

Slide credit: Noah Snavely
Better methods exist...

State of the art method

Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/
Stereo as energy minimization

What defines a good stereo correspondence?

1. Match quality
 - Want each pixel to find a good match in the other image

2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount
Stereo as energy minimization

- Find disparity map d that minimizes an energy function $E(d)$

- Simple pixel / window matching

\[
E(d) = \sum_{(x,y) \in I} C(x, y, d(x, y))
\]

\[
C(x, y, d(x, y)) = \text{SSD distance between windows } l(x, y) \text{ and } J(x + d(x,y), y)
\]
Stereo as energy minimization

$I(x, y)$ $J(x, y)$

$y = 141$

$C(x, y, d)$; the disparity space image (DSI)

Slide credit: Noah Snavely
Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

\[d(x, y) = \arg \min_{d'} C(x, y, d') \]
Greedy selection of best match
Stereo as energy minimization

- Better objective function

\[E(d) = E_d(d) + \lambda E_s(d) \]

- Match cost
 - Want each pixel to find a good match in the other image

- Smoothness cost
 - Adjacent pixels should (usually) move about the same amount

Slide credit: Noah Snavely
Stereo as energy minimization

\[E(d) = E_d(d) + \lambda E_s(d) \]

match cost:

\[E_d(d) = \sum_{(x, y) \in I} C(x, y, d(x, y)) \]

smoothness cost:

\[E_s(d) = \sum_{(p, q) \in \mathcal{E}} V(d_p, d_q) \]

\(\mathcal{E} \) : set of neighboring pixels

4-connected neighborhood

8-connected neighborhood

Slide credit: Noah Snavely
Smoothness cost

\[E_S(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q) \]

How do we choose \(V \)?

\[V(d_p, d_q) = |d_p - d_q| \]

\(L_1 \) distance

\[V(d_p, d_q) = \begin{cases}
0 & \text{if } d_p = d_q \\
1 & \text{if } d_p \neq d_q
\end{cases} \]

“Potts model”
Dynamic programming

\[E(d) = E_d(d) + \lambda E_s(d) \]

• Can minimize this independently per scanline using dynamic programming (DP)

• Basic idea: incrementally build a table of costs \(D \) one column at a time

\[D(x, y, i) : \text{minimum cost of solution such that } d(x, y) = i \]

Base case: \(D(0, y, i) = C(0, y, i), i = 0, \ldots, L \) (\(L = \text{max disparity} \))

Recurrence: \(D(x, y, i) = C(x, y, i) + \min_{j \in \{0, 1, \ldots, L\}} D(x - 1, y, j) + \lambda |i - j| \)
Dynamic programming

- Finds “smooth”, low-cost path through DPI from left to right
Stereo as a minimization problem

\[E(d) = E_d(d) + \lambda E_s(d) \]

• The 2D problem has many local minima
 – Gradient descent doesn’t work well

• And a large search space
 – \(n \times m \) image w/ \(k \) disparities has \(k^{nm} \) possible solutions
 – Finding the global minimum is NP-hard in general
If we see a point in camera 1, are there any constraints on where we will find it on camera 2?
Epipolar constraint
Some terminology
Some terminology

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Slide credit: Antonio Torralba
Some terminology

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane
Some terminology

Baseline: the line connecting the two camera centers

Epipole: point of intersection of *baseline* with the image plane

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world
Some terminology

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world

Epipolar line: intersection of the epipolar plane with each image plane
Epipolar constraint

We can search for matches across epipolar lines

All epipolar lines intersect at the epipoles
The essential matrix

If we observe a point in one image, its position in the other image is constrained to lie on the line defined by above.

\[p^T E p' = 0 \]

E: essential matrix
p, p': image points in homogeneous coordinates

Slide credit: Antonio Torralba
Real-time stereo

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

• Used for robot navigation (and other tasks)
 – Several real-time stereo techniques have been developed (most based on simple discrete search)
Stereo reconstruction pipeline

• Steps
 – Calibrate cameras
 – Rectify images
 – Compute disparity
 – Estimate depth

What will cause errors?

• Camera calibration errors
• Poor image resolution
• Occlusions
• Violations of brightness constancy (specular reflections)
• Large motions
• Low-contrast image regions
Active stereo with structured light

- Project “structured” light patterns onto the object
 - simplifies the correspondence problem
 - basis for active depth sensors, such as Kinect and iPhone X (using IR)
Active stereo with structured light

Laser scanning

• Optical triangulation
 – Project a single stripe of laser light
 – Scan it across the surface of the object
 – This is a very precise version of structured light scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
Laser scanned models

The Digital Michelangelo Project, Levoy et al.
Laser scanned models

The Digital Michelangelo Project, Levoy et al.
Laser scanned models

The Digital Michelangelo Project, Levoy et al.
Laser scanned models

The Digital Michelangelo Project, Levoy et al.