
Stereo

Computer Vision 
Fall 2018 

Columbia University



Homework

•Homework 2 grades are back


•Median 37/40, std 7.2


•Homework 3 due now


•Homework 4 out today



My Office Hours

•Now Mondays 5pm-6pm



Course Evaluations

• 60% response rate so far


•Please respond by tomorrow


•We read all feedback! 



Image Stitching



Image alignment

Why don’t these image line up exactly?



Transformation Models2D Transformation Models

• Translation only

• Rigid body (translate+rotate)

• Similarity (translate+rotate+scale)

• AIne

• Homography (projective)



Camera Projection
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Camera Matrix
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Mapping points from the world to image coordinates is 

matrix multiplication in homogenous coordinates



Projection of 3D Plane
All points on the

plane have Z = 0
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Slide credit: Peter Corke



Projection of 3D Plane
All points on the

plane have Z = 0
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Two-views of Plane
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Slide credit: Deva Ramanan



Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography between A and B 

using least squares on set of matches

What could go wrong?

Slide credit: Noah Snavely



Outliers
outliers

inliers

Slide credit: Noah Snavely



Robustness
• Let’s consider a simpler example… linear 

regression

• How can we fix this?
Problem: Fit a line to these datapoints Least squares fit

Slide credit: Noah Snavely



We need a better cost function…

• Suggestions?

Slide credit: Noah Snavely



Counting inliers

Slide credit: Noah Snavely



Counting inliers

Inliers: 3
Slide credit: Noah Snavely



Counting inliers

Inliers: 20
Slide credit: Noah Snavely



Idea

• Given a hypothesized line
• Count the number of points that “agree” with 

the line
– “Agree” = within a small distance of the line
– I.e., the inliers to that line

• For all possible lines, select the one with the 
largest number of inliers

Slide credit: Noah Snavely



How do we find the best line?

• Unlike least-squares, no simple closed-form 
solution 

• Hypothesize-and-test
– Try out many lines, keep the best one
– Which lines?

Slide credit: Noah Snavely



RANSAC

Algorithm:
1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Slide credit: James Hays



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide credit: James Hays



G

RANSAC

6 InliersN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide credit: James Hays



G

RANSAC

14 InliersN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays



RANSAC for alignment

Slide credit: Deva Ramanan



RANSAC for alignment

Slide credit: Deva Ramanan



RANSAC for alignment

Slide credit: 
Deva Ramanan



Implementing image warping

• Given a coordinate xform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute an 
xformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)x x’

T(x,y)y y’



Forward Warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if pixel lands “between” two pixels?

y y’



Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)x x’

T-1(x,y)

• Requires taking the inverse of the transform
• What if pixel comes from “between” two pixels?

y y’



Inverse Warping

• Get each pixel g(x’) from its corresponding 
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from interpolated

(prefiltered) source image

f(x,y) g(x’,y’)x x’

y y’
T-1(x,y)



Blending

• We’ve aligned the images – now what?

Slide credit: Noah Snavely



Blending

• Want to seamlessly blend them together

Slide credit: Noah Snavely



Image Blending

Slide credit: Noah Snavely



Feathering
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Effect of window size
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Slide credit: Noah Snavely
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Effect of window size

Slide credit: Noah Snavely



Blending

Slide credit: Davis ‘98



Blending

Slide credit: Olga Russakovsky



Blending

Slide credit: Davis ‘98



Stereo



Stereo vision

~6cm ~50cm

!44
Slide credit: Antonio Torralba



Why not put our

second eye here?



Stereoscopes: A 19th Century Pastime



Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923



Teesta suspension bridge-Darjeeling, India



Mark Twain at Pool Table", no date, UCR Museum of Photography



3D Movies



Depth without objects
Random dot stereograms (Bela Julesz)

Julesz, 1971 

!51



Stereo

• Given two images from different viewpoints
– How can we compute the depth of each point in the image?
– Based on how much each pixel moves between the two images



Geometry for a simple stereo system

!53
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Slide credit: Antonio Torralba



Geometry for a simple stereo system

!54
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Slide credit: Antonio Torralba



Geometry for a simple stereo system

!55
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Slide credit: Antonio Torralba



Geometry for a simple stereo system

!56
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Similar triangles
Slide credit: Antonio Torralba



Geometry for a simple stereo system

!57
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Slide credit: Antonio Torralba



Geometry for a simple stereo system
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Slide credit: Antonio Torralba



Geometry for a simple stereo system

!59
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Geometry for a simple stereo system

!60
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Disparity
Slide credit: Antonio Torralba



epipolar
lines

Epipolar geometry

(x1, y1) (x2, y1)

x2 -x1 = the disparity of pixel (x1, y1)

Two images captured by a purely horizontal translating camera
(rectified stereo pair)

Slide credit: Noah Snavely



Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image
• pick pixel with minimum match cost

Improvement:  match windows
Slide credit: Noah Snavely



Stereo matching based on SSD

SSD

dmin d
Best matching disparity

Slide credit: Noah Snavely



Window size

– Smaller window
+
•

– Larger window
+
•

W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo Matching Algorithm 

with an Adaptive Window: Theory and Experiment,, 
Proc. International Conference on Robotics and 
Automation, 1991. 

• D. Scharstein and R. Szeliski. Stereo matching with 
nonlinear diffusion. International Journal of Computer 
Vision, 28(2):155-174, July 1998 

Effect of window size

Slide credit: Noah Snavely



Stereo results
– Data from University of Tsukuba
– Similar results on other images without ground truth

Ground truthScene

Slide credit: Noah Snavely



Results with window search

Window-based matching
(best window size)

Ground truth

Slide credit: Noah Snavely



Better methods exist...

State of the art method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/



Stereo as energy minimization

• What defines a good stereo correspondence?
1. Match quality

• Want each pixel to find a good match in the other image
2. Smoothness

• If two pixels are adjacent, they should (usually) move about 
the same amount 

Slide credit: Noah Snavely



Stereo as energy minimization

• Find disparity map d that minimizes an energy 
function 

• Simple pixel / window matching

SSD distance between windows 
I(x, y) and J(x + d(x,y), y)=

Slide credit: Noah Snavely



Stereo as energy minimization

I(x, y) J(x, y) 

y = 141

C(x, y, d); the disparity space image (DSI)x

d

Slide credit: Noah Snavely



Stereo as energy minimization

y = 141

x

d

Simple pixel / window matching: choose the minimum of each 
column in the DSI independently:

Slide credit: Noah Snavely



Greedy selection of best match

Slide credit: Noah Snavely



Stereo as energy minimization

• Better objective function

{ {

match cost smoothness cost

Want each pixel to find a good 
match in the other image

Adjacent pixels should (usually) 
move about the same amount

Slide credit: Noah Snavely



Stereo as energy minimization

match cost:

smoothness cost:

4-connected 
neighborhood

8-connected 
neighborhood

: set of neighboring pixels

Slide credit: Noah Snavely



Smoothness cost

“Potts model”

L1 distance

How do we choose V?

Slide credit: Noah Snavely



Dynamic programming

• Can minimize this independently per scanline 
using dynamic programming (DP)

• Basic idea: incrementally build a table of costs 
D one column at a time

: minimum cost of solution such that d(x,y) = i

Recurrence:

Base case: (L = max disparity)

Slide credit: Noah Snavely



Dynamic programming

• Finds “smooth”, low-cost path through DPI from left 
to right

y = 141

x

d

Slide credit: Noah Snavely



Dynamic Programming



Stereo as a minimization problem

• The 2D problem has many local minima
– Gradient descent doesn’t work well

• And a large search space
– n x m image w/ k disparities has knm possible solutions
– Finding the global minimum is NP-hard in general

• Good approximations exist… we’ll see this soon
Slide credit: Noah Snavely



Stereo correspondence constraints

O O’

p
p’ ?

If we see a point in camera 1, are there any constraints on where we 
will find it on camera 2?

Camera 1 Camera 2

!80
Slide credit: Antonio Torralba



Epipolar constraint

O O’

p
p’ ?

!81
Slide credit: Antonio Torralba



Some terminology

!82

O O’

p
p’ ?

Slide credit: Antonio Torralba



Some terminology

!83

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Baseline

Slide credit: Antonio Torralba



Some terminology

!84

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

epipole epipoleBaseline

Slide credit: Antonio Torralba



Some terminology

!85

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipole: point of intersection of baseline with the image plane

epipolar plane

Slide credit: Antonio Torralba



Some terminology

!86

O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipolar line: intersection of the epipolar plane with each image plane

Epipole: point of intersection of baseline with the image plane

epipolar line
epipolar line

Slide credit: Antonio Torralba



Epipolar constraint

O O’

p
p’ ?

!87

epipolar line

We can search for matches across epipolar lines 

All epipolar lines intersect at the epipoles

Slide credit: Antonio Torralba



The essential matrix

!88

O O’

p
p’

pT E p’ = 0
E: essential matrix 
p, p’: image points in homogeneous coordinates

If we observe a point in one image, its position in the other image is constrained to lie 
on line defined by above.

Slide credit: Antonio Torralba



Real-time stereo

• Used for robot navigation (and other tasks)
– Several real-time stereo techniques have been 

developed (most based on simple discrete search)

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html



• Camera calibration errors
• Poor image resolution
• Occlusions
• Violations of brightness constancy (specular reflections)
• Large motions
• Low-contrast image regions

Stereo reconstruction pipeline
• Steps

– Calibrate cameras
– Rectify images
– Compute disparity
– Estimate depth

What will cause errors?



Active stereo with structured light

• Project “structured” light patterns onto the object
– simplifies the correspondence problem
– basis for active depth sensors, such as Kinect and iPhone X (using IR)

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo



Active stereo with structured light

https://ios.gadgethacks.com/news/watch-iphone-xs-30k-ir-dots-scan-your-face-0180944/



Laser scanning

• Optical triangulation
– Project a single stripe of laser light
– Scan it across the surface of the object
– This is a very precise version of structured light scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/



Laser scanned models

The Digital Michelangelo Project, Levoy et al.



Laser scanned models

The Digital Michelangelo Project, Levoy et al.



Laser scanned models

The Digital Michelangelo Project, Levoy et al.



Laser scanned models

The Digital Michelangelo Project, Levoy et al.


