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Last Time: Two-View Stereo

Key Idea: use feature motion to understand shape



Today: Photometric Stereo
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Foreshortening
PhotometryCS 4495 Computer Vision – A. Bobick

Foreshortening: A Simple Observation 

As the surface tilts away from the light source the same light 
energy is spread over a larger area, making the surface darker



Photometric Stereo

Input 
(1 of 12)

Normals (RGB 
colormap)

Normals (vectors) Shaded 3D 
rendering

Textured 3D  
rendering

What results can you get?





Modeling Image Formation

Track a “ray” of light all the way from light source to the 
sensor

Now we need to reason about: 
• How light interacts with the 

scene 
• How a pixel value is related to 

light energy in the world



Light rays interacting with a 
surface
• Light of radiance !" comes from light source at an 

incoming direction #"
• It sends out a ray of radiance !$ in the outgoing 

direction #$
• How does !$ relate to !" ?

#" #$

• N is surface normal
• L is direction of light, making #"

with normal
• V is viewing direction, making #$

with normal 



Light rays interacting with a 
surface

!" !#

• N is surface normal
• L is direction of light, making !"

with normal
• V is viewing direction, making !#

with normal 

$# = & !", !# $" cos !"Output radiance 
along V

Bi-directional reflectance function (BRDF)

Incoming 
irradiance along 
L
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Materials - Three Forms

Ideal diffuse 
(Lambertian)

Ideal 
specular

Directional 
diffuse
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Reflectance—Three Forms

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular
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Ideal Diffuse Reflection

• Characteristic of multiple scattering 
materials 

• An idealization but reasonable for matte 
surfaces 

• Basis of most radiosity methods
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Ideal Specular Reflection

• Calculated from Fresnel’s equations 
• Exact for polished surfaces 
• Basis of early ray-tracing methods



Light rays interacting with a 
surface

• Special case 1: Perfect mirror
• ! "#, "% = 0 unless "# = "%

• Special case 2: Matte surface
• ! "#, "% = !' (constant)

"# "%
(% = ! "#, "% (# cos "#



For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Refraction…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Interreflections…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Subsurface Scattering…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



Lambertian surfaces

• For a lambertian surface:

• ! is called albedo
• Think of this as paint
• High albedo: white colored surface
• Low albedo: black surface
• Varies from point to point

Lr = ⇢Li cos ✓i

) Lr = ⇢LiL ·N
"# "$



Lambertian surfaces

• Assume the light is directional: all 
rays from light source are parallel
• Equivalent to a light source 

infinitely far away

• All pixels get light from the same 
direction L and of the same 
intensity Li

!" !#



Lambertian surfaces

I(x, y) = ⇢(x, y)LiL ·N(x, y)

Reflectance 
image

Shading 
image

Intrinsic Image 
Decomposition



Reconstructing Lambertian
surfaces

• Equation is a constraint on albedo and normals
• Can we solve for albedo and normals?

I(x, y) = ⇢(x, y)LiL ·N(x, y)



Solution 1: Recovery from a single 
image
• Step 1: Intrinsic image 

decomposition
• Reflectance image ! ", $
• Shading image
• Decomposition relies on priors on 

reflectance image
• What kind of priors?
• Reflectance image captures the 

“paint” on an object surface
• Surfaces tend to be of uniform color 

with sharp edges when color 
changes

LiL ·N(x, y)

Images from Barron et al, TPAMI 13
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Solution 1: Recovery from a single 
image

• Step 2: Decompose shading image into illumination 
and normals

• Called Shape-From-Shading
• Relies on priors on shape: shapes are smooth

LiL ·N(x, y)

Far

Near



Photometric Stereo

Key Idea: use pixel brightness to understand shape



Solution 2: Recovery from 
multiple images

• Represents an equation in the albedo and normals
• Multiple images give constraints on albedo and normals
• Called Photometric Stereo

I(x, y) = ⇢(x, y)LiL ·N(x, y)

Image credit: Wikipedia



Photometric stereo - the math

• Consider single pixel
• Assume !" = 1

• Write
• G	is a 3-vector
• Norm of G = '
• Direction of G = N

I(x, y) = ⇢(x, y)LiL ·N(x, y)

I = ⇢L ·N

I = ⇢NTL

G = ⇢N



Photometric stereo - the math

• Consider single pixel
• Assume !" = 1

• Write
• G	is a 3-vector
• Norm of G = '
• Direction of G = N

I = ⇢NTL
G = ⇢N

I = GTL = LTG



Photometric stereo - the math

• Multiple images with different light sources but 
same viewing direction?

I = LTG

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG



Photometric stereo - the math

• Assume lighting directions are known
• Each is a linear equation in G
• Stack everything up into a massive linear system of 

equations!

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG



Photometric stereo - the math

I1 = LT
1 G

I2 = LT
2 G

...

Ik = LT
kG

I = LTG

k x 1 vector 
of intensities

k x 3 matrix 
of lighting 
directions

3x1 vector of 
unknowns



Photometric stereo - the math

• What is the minimum value of k to allow recovery 
of G?
• How do we recover G if the problem is 

overconstrained?

I = LTG
k x 1              k x 3         3 x 1

G = L�T I



Photometric stereo - the math

• How do we recover G if the problem is 
overconstrained? 
• More than 3 lights: more than 3 images

• Least squares

• Solved using normal equations

min
G

kI� LTGk2

G = (LLT )�1LI



Normal equations

• Take derivative with respect to G and set to 0

kI� LTGk2 = IT I+GTLLTG� 2GTLI

2LLTG� 2LI = 0

) G = (LLT )�1LI



Estimating normals and albedo 
from G
• Recall that G = ⇢N

kGk = ⇢

G

kGk = N



Multiple pixels

• We’ve looked at a single pixel till now
• How do we handle multiple pixels?
• Essentially independent equations!



Multiple pixels: matrix form

• Note that all pixels share the same set of lights

I(1) = LTG(1)

I(2) = LTG(2)

...

I(n) = LTG(n)



Multiple pixels: matrix form

• Can stack these into columns of a matrix

⇥
I(1) I(2) · · · I(n)

⇤
= LT

⇥
G(1) G(2) · · · G(n)

⇤

I(1) = LTG(1)

I(2) = LTG(2)

...

I(n) = LTG(n)

I = LTG



Multiple pixels: matrix form

I = LTG

I LT
G

=#l
ig
ht
s

#pixels #pixels

#l
ig
ht
s

3

3



Determining Light Directions

33

• Trick: Place a mirror ball in the scene.

• The location of the highlight is determined by the 
light source direction.
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Real-World HDR Lighting Environments

Lighting Environments from the Light Probe Image Gallery:  
http://www.debevec.org/Probes/

Funston 
Beach

Uffizi 
Gallery

Eucalyptus  
Grove

Grace 
Cathedral
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Mirrored Sphere
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Extreme HDR Image Series

1 sec 
f/4

1/4 sec  
f/4

1/30 sec  
f/4

1/8000 sec f/161/30 sec  
f/16

1/250 sec  
f/16

1/1000 sec  
f/16
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1 sec 
f/4

1/4 sec  
f/4

1/30 sec  
f/4

1/8000 sec f/16 
only image that does not 
saturate!

1/30 sec  
f/16

1/250 sec  
f/16

1/1000 sec  
f/16

Extreme HDR Image Series 
sun closeup
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HDRI Sky Probe



• For a perfect mirror, the light is reflected across N:
Determining Light Directions

10



=               - 2

So the light source direction
is given by:

Determining Light Directions

11

L

N

R||||
= " ⋅ $ "
= $ − " ⋅ $ "
= $ − " ⋅ $ "

= $ − 2 $ − " ⋅ $ "
= 2 " ⋅ $ " − $



Photometric Stereo

Input
(1 of 12)

Normals (RGB 
colormap)

Normals (vectors) Shaded 3D
rendering

Textured 3D
rendering

What results can you get?



Results

38

from Athos Georghiades



Unknown Lighting

22

Diffuse 
albedo

Light 
intensity

Surface normals Light directions



Unknown Lighting
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Surface normals, scaled 
by albedo

Light directions, scaled 
by intensity



Unknown Lighting

24

I

n 
= 

# 
im

ag
es

p = # pixels

LT
G

=



Unknown Lighting

25

=
*

I LT

G

Measurements 
(one image per row)

Light directions
(scaled by intensity)

Surface normals
(scaled by albedo)

Both L and G are now unknown!
This is a matrix factorization problem.



=
*

I L

G

There�s hope: We know that I is rank 3

(n x 3)

(3 x p)

(n x p)

Unknown Lighting



I U
V

=

Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix. 

Unknown Lighting



I U
V

=

Use the SVD to decompose I:

SVD gives the best rank-3 approximation of a matrix. 

Unknown Lighting

What do we do with Σ?



I U
V

=

Use the SVD to decompose I:

Can we just do that?

Unknown Lighting



I U
V

=

Use the SVD to decompose I:

Can we just do that? …almost.

The decomposition is unique up to an invertible 3x3 A. 

Unknown Lighting



I U
V

=

Use the SVD to decompose I:

Can we just do that? …almost.

The decomposition is unique up to an invertible 3x3 A. 

Unknown Lighting

! = # Σ%, ' = %() Σ*



I U
V

=

Use the SVD to decompose I:

Unknown Lighting

! = # Σ%, ' = %() Σ*
You can find A if you know 
• 6 points with the same reflectance, or
• 6 lights with the same intensity.



Unknown Lighting: Ambiguities
• Multiple combinations of 

lighting and geometry can 
produce the same sets of 
images.
• Add assumptions or prior 

knowledge about geometry or 
lighting, etc. to limit the 
ambiguity.



Johnson and Adelson, 2009
















