Learning 3D Vision

Computer Vision Fall 2018 Columbia University

Project FAQ

- "What happens if my proposal is different from my final project?"
 - We want to see that you have a clear idea and plausible path to the solution
 - My first attempt almost never works.
 - Just do a cool project!

Project FAQ

- "I don't have 500 GPUs"
 - In my last paper, I only used 1 GPU, no parameter tuning
 - Isolate your idea and focus on it

Binocular Stereo

Key Idea: use feature motion to understand shape

Photometric Stereo

Key Idea: use pixel brightness to understand shape

Learning-based 3D

Key Idea: learn it from data

epipolar lines

Matching is hard

?

Structure depends on priors

The world is not ideal diffuse

We want to recognize objects in 3D

 V_1

 V_2

John Flynn et al. DeepStereo

С

Given v1 and v2, reconstruct the new view C

 V_1

 V_2

С

Stereo with three cameras?

Multi-view Stereo

Point Grey's Bumblebee XB3

Point Grey's ProFusion 25

CMU's 3D Room

Multi-view Stereo

Input: calibrated images from several viewpoints Output: 3D object model

Figures by Carlos Hernandez

Google

Multi-view stereo: Basic idea

Why multi-view stereo?

1. Some cameras have a closer view

Cameras 2 and 3 can more clearly see point p.

Cameras 1 and 2 can more clearly see point q.

Why multi-view stereo?

- 1. Some cameras have a closer view
- 2. Cameras can't see everything

Camera 5 can't see point r.

Camera 1 can't see point s.

Why multi-view stereo?

- 1. Some cameras have a closer view
- 2. Cameras can't see everything
- 3. Multiple cameras can reduce measurement error

<image>

Estimated points contain some error.

Estimated points contain some error.

Multiview Stereo (version 0)

-Pick one reference view

-For each point and for each candidate depth

• keep depths with low SSD error in all other views

Problem: not all points are visible in all other views: (declusion and visibility major nuisance!)

Plane-sweep Stereo

Sweep over voxel plane-by-plane, starting closest-to-front

Quickly validate voxels in a plane by computing their appearance in a virtual view using all N cameras

Store photoconsistent color in a 3D voxel grid (don't need a reference image) Reconstuct shape *and* appearance

Red:

Green:

Blue:

 d_m = 520 meter

Red:

Green:

Blue:

 d_m = 583 meter

Red:

Green:

Blue:

 d_m = 706 meter

Red:

Green:

Blue:

 d_m = 790 meter

Red:

Green:

Blue:

 d_m = 1026 meter

Red:

Green:

Blue:

d_m = 2168 meter

Plane sweep stereo example

• ZNCC scores for different depths and *k*

Plane sweep and ambiguities

• Multiple views can resolve ambiguities in difficult areas!

What about other camera steups?

Panoramic depth ordering

Seitz & Dyer

Layers radiate inwardly/outwardly

 V_1

 V_2

С

Synthesizing C from V1 and V2

John Flynn et al. DeepStereo

Train deep network select pixel from 1 of K depth planes (At each pixel, output 1 of K classes)

© Kavita Bala, Computer Science, Cornell University

Light rays interacting with a surface

$$L_r = \rho(\theta_i, \theta_r) L_i \cos \theta_i$$

- Special case 1: Perfect mirror
 - $\rho(\theta_i, \theta_r) = 0$ unless $\theta_i = \theta_r$
- Special case 2: Matte surface
 - $\rho(\theta_i, \theta_r) = \rho_0$ (constant)

Image

Reflectance Shape Shading

[Neural Face Editing with Intrinsic Image Disentangling]

Applications

Object insertion

[Rendering Synthetic Objects into Legacy Photographs]

Applications

• Material editing

[Learning Non-Lambertian Object Intrinsics...]

Applications

Shadow/shading removal

[Removing shadows from images using retinex]

Intrinsic Images In the Wild

- Thousands of real world images
- Relative annotation (which is darker)
- Sparsely annotated

[Intrinsic Images in the Wild]

Intrinsic Images In the Wild

[Intrinsic Images in the Wild]

Intrinsic Images In the Wild

Automatic intrinsic image decomposition

[Intrinsic Images in the Wild]

MPI Sintel Dataset

Image

Ground-truth Albedo

Ground-truth Shading

[A naturalistic open source movie for optical flow evaluation]

Direct Intrinsics

• Pixel-wise regression task

output albedo image

C N N

output shading image

[Narihira et al. 2015]

What changes across views?

What changes across time?

[Deriving intrinsic images from image sequences]

Intrinsic Image Decomposition

[Single Image Intrinsic Decomposition without...]

Intrinsic Image Decomposition

Estimating depth from a single image

• Why is this even possible?

Slide Credit: Bharath Hariharan

Estimating depth from a single image

• Why is this even possible?

Slide Credit: Bharath Hariharan

Estimating depth from a single image

• Why is this even possible?

Slide Credit: Bharath Hariharan

First we need lots of data...

Find a gaming friend

Collect depth data

for XBOX 360.

NYU Depth v2

Then create a neural net

Go back to gaming friend

Predict depth & normals

Predict depth & normals

David Eigen and Rob Fergus, NYU

Missing Depth

Raw Depth (D) from Intel R200 camera

Slide from Thomas Funkhouser

Go back to gaming friend

Go back to gaming friend

Playing for Depth

Mohammad M. Haji-Esmaeili mohammadhaji@modares.ac.ir Gholamali Montazer montazer@modares.ac.ir

Figure 1: Images and Depths extracted from the game Grand Theft Auto V

Depth predictions

Figure 9: Qualitative Results. From left to right: Input Image, Eigen [8], DIW (Full) [10], Our Approach

Depth predictions

No flowers in Grand Theft Auto V?

> Figure 11: Failure Cases. From left to right: Input Image, Eigen [8], DIW (Full) [10], Our Approach

Go make a game

Weifeng Chen, Donglai Xiang, Jia Deng Surface Normal Estimation in the Wild

Normal predictions

Weifeng Chen, Donglai Xiang, Jia Deng Surface Normal Estimation in the Wild

