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Project FAQ

• “What happens if my proposal is different from my 
final project?” 

• We want to see that you have a clear idea and plausible 
path to the solution


• My first attempt almost never works. 


• Just do a cool project! 



Project FAQ

• “I don’t have 500 GPUs” 

• In my last paper, I only used 1 GPU, no parameter 
tuning


• Isolate your idea and focus on it



Binocular Stereo

Key Idea: use feature motion to understand shape



Photometric Stereo

Key Idea: use pixel brightness to understand shape



Learning-based 3D

Key Idea: learn it from data

A better visualization of AlexNet
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27x27x256
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input

conv1

conv2

conv3 conv4 conv5
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Red layers are followed by max pooling

output

Visualization hids the dimensions of the filters



Why learn 3D vision?



Why learn 3D vision?

epipolar
lines

Epipolar geometry

(x1, y1) (x2, y1)

x2 -x1 = the disparity of pixel (x1, y1)

Two images captured by a purely horizontal translating camera
(rectified stereo pair)Matching is hard



Why learn 3D vision?

Structure depends on priors 

? ?



Why learn 3D vision?

The world is not ideal diffuse

For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



Why learn 3D vision?

We want to recognize objects in 3D



Single image

Multiple images


Depth image

…


3D voxels

Depth image

Object recognition


View synthesis

…


3D Models

Neural Net
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John Flynn et al. DeepStereo
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John Flynn et al. DeepStereo

Given v1 and v2, reconstruct the new view C



John Flynn et al. DeepStereo

Stereo with three cameras?



(



Multi-view Stereo

CMU’s 3D Room

Point Grey’s Bumblebee XB3

Point Grey’s ProFusion 25



Multi-view Stereo

Figures by Carlos Hernandez

Input:  calibrated images from several viewpoints
Output:  3D object model







Multi-view stereo: 
Basic idea

Source: Y. Furukawa
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Multi-view stereo: 
Basic idea

Source: Y. Furukawa



Why multi-view stereo?

1. Some cameras have a closer view



1 2

3

p

Cameras 2 and 3 can more clearly see point p.



1 2

3

q

Cameras 1 and 2 can more clearly see point q.



Why multi-view stereo?

1. Some cameras have a closer view


2. Cameras can’t see everything



Camera 5 can’t see point r.

1

2 3 4

5

r



Camera 1 can’t see point s.

1

2 3 4

5

s



Why multi-view stereo?

1. Some cameras have a closer view


2. Cameras can’t see everything


3. Multiple cameras can reduce measurement error 



1 2



1 2



Estimated points contain some error.

1 2



Estimated points contain some error.

1 2



Estimated points contain some error.
3

4



Additional views reduce error.

1 2

3

4



Multiview Stereo (version 0)Multiview stereo (version 0)

Multibaseline Stereo Reconstruction 

-Pick one reference view 
-For each point and for each candidate depth

• keep depths with low SSD error in all other views

Multibaseline Stereo 
Multibaseline Stereo 

Multibaseline Stereo 
Multibaseline Stereo 

Problem: not all points are visible in all other views (occlusion and visibility major nuisance!)

(or any photoconsistency measure)



Plane-sweep StereoPlane-sweep stereo (version 2)
Sweep over voxel plane-by-plane, starting closest-to-front

Voxel Coloring Sweep Order 

 
 

 

Layers 

Scene 
Traversal 

Seitz 

31

Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

31

Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

Quickly validate voxels in a plane by computing their appearance in a virtual view using all N cameras

What is the transformation that warps image N to virtual view?

Multiview stereo (version 1)
Hypothesize depths in a “smart” order where occluding points are found first

Use knowledge of occluding points to smartly select view for photoconsistency check

Voxel Coloring Sweep Order 

 
 

 

Layers 

Scene 
Traversal 

Seitz Store photoconsistent color in a 3D voxel grid (don’t need a reference image)

Reconstuct shape and appearance



Plane sweep for multiple views 

19 

𝑑𝑚 = 520 meter 

Red: 

Green: 

Blue: 



Plane sweep for multiple views 

20 

𝑑𝑚 = 583 meter 

Red: 

Green: 

Blue: 



Plane sweep for multiple views 
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𝑑𝑚 = 706 meter 

Red: 

Green: 

Blue: 



Plane sweep for multiple views 
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𝑑𝑚 = 790 meter 

Red: 

Green: 

Blue: 



Plane sweep for multiple views 

23 

𝑑𝑚 = 1026 meter 

Red: 

Green: 

Blue: 



Plane sweep for multiple views 

24 

𝑑𝑚 = 2168 meter 

Red: 

Green: 

Blue: 



Plane sweep stereo example 

• ZNCC scores for different depths and k 

26 



Plane sweep and ambiguities 

• Multiple views can resolve ambiguities  
in difficult areas! 
 

27 



Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 

What about other camera steups?

Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 



Panoramic depth ordering

Layers radiate inwardly/outwardly

Panoramic Depth Ordering 

Seitz 
Layers radiate outwards from cameras 

Seitz & Dyer



)



John Flynn et al. DeepStereo

Synthesizing C from V1 and V2



Recent work: deep stereo

D Selection 
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Figure 3: The basic architecture of our network, with selec-
tion and color towers. The final output image is produced by
element-wise multiplication of the selection and color tower
outputs and then computing the sum over the depth planes.
Fig. 6 shows the full network details.

e.g., a simple average, but learns to optimally combine
the source pixels using training data.

The two towers in our network correspond to these two tasks:
the selection tower produces a probability map (or selection

map) for each depth indicating the likelihood of each pixel
having that depth. The color tower produces a full color
output image for each depth; one can think of this tower
as producing the best color it can for each depth, assuming
that the depth is the correct one. These D color images are
then combined as a per-pixel weighted sum with weights
drawn from the selection maps: the selection maps decide
on the best color layers to use for each output pixel. This
simple new approach to view synthesis has several attractive
properties. For instance, we can learn all of the parameters of
both towers simultaneously, end-to-end using deep learning
methods. The weighted averaging across color layers also
yields some resilience to uncertainty—regions where the
algorithm is not confident tend to be blurred out, rather than
being filled with warped or distorted input pixels.

More formally, the selection tower computes, for each
pixel pi,j , in each plane Pz , the selection probability si,j,z
for the pixel being at that depth. The color tower computes
for each pixel pi,j in each plane Pz the color ci,j,z for the
pixel at that plane. The final output color for each pixel is
computed as a weighted summation over the output color
planes, weighted by the selection probability (Fig. 3):

cfi,j =
X

si,j,z ci,j,z. (1)

The input to each tower is the set of plane sweep volumes
V k
C (consisting of N ⇥D reprojected images in total over

all volumes, where N is the number of source images, and
D the number of depth planes). The first layer of each
tower operates on each reprojected image P i

k independently,
allowing it to learn low-level image features. After the first

D Selection 
masks
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Figure 4: The selection tower learns to produce a selection
probability si,j,z for each pixel pi,j in each depth plane Pz .
The first 2D layer operates on the individual reprojected im-
ages. Subsequent layers operate on the concatenated features
per depth plane.

layer, the feature maps corresponding to the N sources are
concatenated per depth plane, and subsequent layers operate
on these per-depth-plane feature maps. The final layers of
the selection tower additionally use connections across depth
planes.

The selection tower. The selection tower (Fig. 4) consists
of two main stages. The early layers, as discussed, consist
of a number of 2D convolutional rectified linear layers that
share weights across all depth planes (and within a depth
plane for the first layer). Intuitively, the early layers will
compute features that are independent of depth, such as pixel
differences, so their weights can be shared. The final set of
layers are connected across depth planes in order to model
interactions between depth planes, such as those caused by
occlusion (e.g., when both a near and far depth plane have
high scores, the network might learn to prefer the near depth
because it would occlude the background). The final layer of
the network is a per-pixel softmax normalization transformer
over depth. The softmax transformer encourages the model
to pick a single depth plane per pixel, whilst ensuring that
the sum over all depth planes is 1. We found that using a
tanh activation for the penultimate layer gives more stable
training than the more natural choice of a linear layer. In our
experiments the linear layer would often “shut down” certain
depth planes1 and never recover, presumably due to large
gradients from the softmax layer. The output of the selection
tower is a 3D volume of single-channel nodes si,j,z wherePD

z=1 si,j,z = 1 for all pixels i, j.

The color tower. The color tower (Fig. 5) is simpler and
consists of only 2D convolutional rectified linear layers that
share weights across all planes, followed by a linear recon-
struction layer. Occlusion effects are not relevant for the
color layer so no across-depth interaction is needed. The

1The depth planes would receive zero weight for all inputs and pixels.

Train deep network select pixel from 1 of K depth planes

(At each pixel, output 1 of K classes)





Single image

Multiple images 

Depth image

…


3D voxels

Depth image

Material properties 

View synthesis

…


3D Models

Neural Net



© Kavita Bala, Computer Science, Cornell University

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular



Light rays interacting with a 
surface

• Special case 1: Perfect mirror
• ! "#, "% = 0 unless "# = "%

• Special case 2: Matte surface
• ! "#, "% = !' (constant)

"# "%
(% = ! "#, "% (# cos "#



[Neural Face Editing with Intrinsic Image Disentangling]

Reflectance Shape Shading

Slide Credit: Wei-Chiu Ma

Image



Applications
• Object insertion

[Rendering Synthetic Objects into Legacy Photographs] Slide Credit: Wei-Chiu Ma



Applications
• Material editing

[Learning Non-Lambertian Object Intrinsics…] Slide Credit: Wei-Chiu Ma



Applications
• Shadow/shading removal

[Removing shadows from images using retinex] Slide Credit: Wei-Chiu Ma



Intrinsic Images In the Wild

[Intrinsic Images in the Wild]

• Thousands of real world images 

• Relative annotation (which is darker) 

• Sparsely annotated



Intrinsic Images In the Wild

[Intrinsic Images in the Wild]



Intrinsic Images In the Wild

[Intrinsic Images in the Wild]

Automatic intrinsic image decomposition 



MPI Sintel Dataset

[A naturalistic open source movie for optical flow evaluation]



Direct Intrinsics

[Narihira et al. 2015]

• Pixel-wise regression task



What changes 
across views?

Slide Credit: Wei-Chiu Ma



[Deriving intrinsic images from image sequences]

What changes 
across time?

Slide Credit: Wei-Chiu Ma



[Single Image Intrinsic Decomposition without…]

Intrinsic Image Decomposition

Slide Credit: Wei-Chiu Ma



Intrinsic Image Decomposition

Slide Credit: Wei-Chiu Ma
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Estimating depth from a single image
• Why is this even possible?

Slide Credit: Bharath Hariharan
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Estimating depth from a single image
• Why is this even possible?

Slide Credit: Bharath Hariharan



First we need lots of data…



Find a gaming friend



Collect depth data

NYU Depth v2



Then create a neural net



Go back to gaming friend



Predict depth & normals



Predict depth & normals

David Eigen and Rob Fergus, NYU



Missing Depth

Slide from Thomas Funkhouser



Go back to gaming friend



Go back to gaming friend



Depth predictions



Depth predictions

No flowers in

Grand Theft


Auto V?



Go make a game

Weifeng Chen, Donglai Xiang, Jia Deng

Surface Normal Estimation in the Wild



Normal predictions

Weifeng Chen, Donglai Xiang, Jia Deng

Surface Normal Estimation in the Wild
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