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Homework 1

• Posted online today


• Due September 24 before class starts


• Turn in PDF and your code online



Office Hours

• Carl:          Monday 4:30pm to 5:30pm, CSB 502


• Oscar:      Thursday 3-4pm, Mudd 500 

• Xiaoning:  Monday, 5-6pm, CS TA Room 

• Bo:            Tuesday, 3-4pm, CS TA Room 

• James:     Thursday 12-1pm, CS TA Room 

• Luc:          Tuesday 4-5pm, CS TA Room



Image Formation

Slide credit: Steve Seitz

Object Film



Image Formation

Add a barrier to block off most of the rays

Slide credit: Steve Seitz

Object FilmBarrier



Image denoising

Slide credit: S. Lazebnik



Average many photos!

Slide credit: S. Lazebnik

Time



What if just one?

Slide credit: S. Lazebnik



Reminder: 
Images as Functions

F[x, y]



Moving Average
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Moving Average
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Moving Average
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Moving Average
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Filtering

We want to remove unwanted 
sources of variation, and keep the 
information relevant for whatever 

task we need to solve

Source: Bill Freeman

Input Image Output Image
Filter



Linear Filtering

Source: Bill Freeman

For a filter to be linear, it must satisfy two properties:


• filter(im, f1 + f2) = filter(im, f1) + filter(im, f2)


• C * filter(im, f1) = filter(im, C * f1)

Input Image Output Image
Filter



Convolution
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• Let f be an image/function, and g is the kernel/filter


• The convolution is defined as:

Convolution

( f * g)[x, y] = ∑
i,j

f[x − i, y − j]g[i, j]



Convolution
( f * g)[x, y] = ∑

i,j

f[x − i, y − j]g[i, j]

f

g



Convolution
( f * g)[x, y] = ∑

i,j

f[x − i, y − j]g[i, j]

f

g

Flip LR, UD



Convolution Practice
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Source: D. Lowe

Convolution Practice
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Translation Filter

Convolution Practice
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Blur Filter

Convolution Practice



Source: D. Lowe

Convolution Practice
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Sharpening Filter

Convolution Practice



Sharpening

Source: D. Lowe



Sharpening

Image Blurred Detail

Image Detail Sharpened

- =

+ =



Convolution Properties

F ⇤H = H ⇤ F

(F ⇤H) ⇤G = F ⇤ (H ⇤G)

(F ⇤G) + (H ⇤G) = (F +H) ⇤G

Commutative:

Associative:

Distributive:



Convolution Properties

Shift Invariance:

Scale:

filter(shift(f)) = shift(filter(f))

filter(A * f) = A * filter(f)



Cross-Correlation

( f * g)[x, y] = ∑
i,j

f[x + i, y + j]g[i, j]
• Conceptually simpler, but not as nice properties:

f

g



Boundary Issues
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full same valid

Slide credit: S. Lazebnik



Border Padding

Circular

Replicate Symmetric

Zero Pad



Box Filter



Gaussian Filter



Gaussian Filter

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 

Constant factor at front makes volume sum to unity



Standard Deviation

Source: K Grauman 

σ = 2 with

30 x 30 
kernel

σ = 5 with

30 x 30 
kernel

Standard deviation σ: determines extent of smoothing



Changing Sigma



Kernel Width

Source: K Grauman 

The Gaussian function has infinite support, but 
discrete filters use finite kernels

Rule of thumb: set filter half-width to about 3σ



Complexity

What is the complexity of filtering an 
n×n image with an m×m kernel?  



Complexity

What is the complexity of filtering an 
n×n image with an m×m kernel?  

O(n2 m2)



Separable Convolution

G(x, y) =
1

2πσ2
exp (−

x2 + y2

2σ2 )
=

1

2πσ
exp (−

x2

2σ2 ) 1

2πσ
exp (−

y2

2σ2 )

Two dimensional Gaussian is product of two Gaussians:

f = f ***

Take advantage of associativity:



Complexity
What is the complexity of filtering an 

n×n image with an m×m kernel?  

O(n2 m2)

What if kernel is separable? 



Complexity
What is the complexity of filtering an 

n×n image with an m×m kernel?  

O(n2 m2)

What if kernel is separable? 

O(n2 m)



Denoising
Additive Gaussian Noise Gaussian Filter (sigma=1)



What’s wrong?
Salt and Pepper Noise Gaussian Filter (sigma=1)



Median Filter
• A median filter operates over a window by selecting the 

median intensity in the window  
 
 
 
 
 
 

   Is median filtering linear?
Source: Kristen Grauman



Why use median?

Source: Kristen Grauman



What’s wrong?
Salt and Pepper Noise Median Filter 3x3



Median Filtering
Median 3x3 Median 5x5 Median 9x9



Image Gradients



Image Gradients

How does intensity 
change as you move 

left to right?

How do you take the 
derivative of an image?



First Derivative

* [−1,1] =

* [−1,1]T =

∂I
∂x

∂I
∂y



Second Derivative

* [−1,1] =

* [−1,1]T =

∂2I
∂x2

∂2I
∂y2



Image Gradients

Source: Seitz and Szeliski



What causes an edge?

Source: G Hager 



What causes an edge?

Source: G Hager 

Surface normal discontinuities



What causes an edge?

Source: G Hager 

Boundaries of material properties



What causes an edge?

Source: G Hager 

Boundaries of material properties



What causes an edge?

Source: G Hager 

Boundaries of lighting



Edge Types

Source: G Hager 



What is an edge?

Source: G Hager 



What about noise?

Source: G Hager 



Handling Noise
• Filter with a Gaussian to smooth, then take gradients


• But, convolution is linear

* [−1,1]T * [−1,1]T =

* [−1,1] * [−1,1] =

Gaussian Filter Laplacian Filter



The Laplacian Filter
• Popularized by Marr and Hildreth in 1980 to locate 

boundaries between objects


• Defined as the sum of second order partial derivatives:

∇I =
∂2I
∂x2

+
∂2I
∂y2



Aside: Gabor Filters
Cosine wave multiple by a Gaussian

Source: MathWorks

ψ(x, y) = e− x2 + y2

2σ2 cos(2πμx)



Aside: Human Visual System



Aside: Cat Visual System

Source: Antonio Torralba



Detection



Finding Boundaries
f

g

∂2f
∂x2

+
∂2f
∂y2

> λ



Finding Things

Source: James Hays, Deva Ramanan

f * gf

g



Source: James Hays, Deva Ramanan

f

g
fij

gθij

fT
ij g = ∥fij∥∥g∥ cos θij

Response for one window:

fij

Detection by Filtering



Source: James Hays, Deva Ramanan

f * (g − ḡ)f

g

True detections

False detections

Find the filter

Detection by Filtering

Filter Response Thresholded



Source: James Hays, Deva Ramanan

True detections

Sum of Squared Differences

1-sqrt(SSD) Thresholded

SSD[i, j] = ∥fij − h∥2
2

= (fij − h)
T

(fij − h)
How do you write


this as a linear filter?



Source: Deva Ramanan

Sum of Squared Differences
What does SSD do here?

1-sqrt(SSD)



Normalized Cross Correlation
NCC[i, j] =

fT
ij h

∥fij∥∥h∥
= cos θij

Source: Deva Ramanan



Intra-class variance



Convolutional Networks
Convolution is building blocks for modern object 
recognition systems

LeNet5



Pyramids



Scale



Image Pyramids

Image: Wikipedia

• Recursively resize image by 
a factor of two


• Called pyramid because it 
looks like a pyramid


• Invariance to scale by 
running operation over each 
level of the pyramid



How to resize images?

Skip every

other pixel

Why does this look bad?



Aliasing

Source: Efros



Aliasing

Source: Efros





Gaussian Pyramids
1. Convolve with Gaussian filter

2. Subsample every other pixel

3. Repeat



Laplacian Pyramids
1. Convolve with Laplacian filter

2. Subsample every other pixel

3. Repeat

Store downsampled image,

not gradients



Recovering Image

Upsample

Add

Level L

Image L-1

Image L



Laplacian Pyramids
• Compression

• Incremental transmission

Applications:



Image Blending



Image Blending



Image Blending
Image A Image B

Region R



Image Blending



Next Class: Repetition


