
Image Processing I

Computer Vision
Fall 2018

Columbia University

Homework 1

• Posted online today

• Due September 24 before class starts

• Turn in PDF and your code online

Office Hours

• Carl: Monday 4:30pm to 5:30pm, CSB 502

• Oscar: Thursday 3-4pm, Mudd 500

• Xiaoning: Monday, 5-6pm, CS TA Room

• Bo: Tuesday, 3-4pm, CS TA Room

• James: Thursday 12-1pm, CS TA Room

• Luc: Tuesday 4-5pm, CS TA Room

Image Formation

Slide credit: Steve Seitz

Object Film

Image Formation

Add a barrier to block off most of the rays

Slide credit: Steve Seitz

Object FilmBarrier

Image denoising

Slide credit: S. Lazebnik

Average many photos!

Slide credit: S. Lazebnik

Time

What if just one?

Slide credit: S. Lazebnik

Reminder:
Images as Functions

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

Source: S. Seitz

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

Source: S. Seitz

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

Source: S. Seitz

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

Source: S. Seitz

F[x, y]

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

Source: S. Seitz

F[x, y]

?

Moving Average

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz

F[x, y]

Filtering

We want to remove unwanted
sources of variation, and keep the
information relevant for whatever

task we need to solve

Source: Bill Freeman

Input Image Output Image
Filter

Linear Filtering

Source: Bill Freeman

For a filter to be linear, it must satisfy two properties:

• filter(im, f1 + f2) = filter(im, f1) + filter(im, f2)

• C * filter(im, f1) = filter(im, C * f1)

Input Image Output Image
Filter

Convolution

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 60 90 90 90 60 30
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
10 20 30 30 30 30 20 10
10 10 10 0 0 0 0 0

1 1 1

1 1 1

1 1 1* =1
9

F[x, y]

G[x, y]

• Let f be an image/function, and g is the kernel/filter

• The convolution is defined as:

Convolution

(f * g)[x, y] = ∑
i,j

f[x − i, y − j]g[i, j]

Convolution
(f * g)[x, y] = ∑

i,j

f[x − i, y − j]g[i, j]

f

g

Convolution
(f * g)[x, y] = ∑

i,j

f[x − i, y − j]g[i, j]

f

g

Flip LR, UD

Convolution Practice

000
010
000

Source: D. Lowe

?

000
010
000

Source: D. Lowe

Convolution Practice

000
100
000

Source: D. Lowe

?

Convolution Practice

000
100
000

Source: D. Lowe

Translation Filter

Convolution Practice

111
111
111

Source: D. Lowe

1
9 ?

Convolution Practice

111
111
111

Source: D. Lowe

1
9

Blur Filter

Convolution Practice

Source: D. Lowe

Convolution Practice

?

111
111
111

Source: D. Lowe

−
1
9000

020
000 ?

Convolution Practice

111
111
111

Source: D. Lowe

−
1
9000

020
000

Sharpening Filter

Convolution Practice

Sharpening

Source: D. Lowe

Sharpening

Image Blurred Detail

Image Detail Sharpened

- =

+ =

Convolution Properties

F ⇤H = H ⇤ F

(F ⇤H) ⇤G = F ⇤ (H ⇤G)

(F ⇤G) + (H ⇤G) = (F +H) ⇤G

Commutative:

Associative:

Distributive:

Convolution Properties

Shift Invariance:

Scale:

filter(shift(f)) = shift(filter(f))

filter(A * f) = A * filter(f)

Cross-Correlation

(f * g)[x, y] = ∑
i,j

f[x + i, y + j]g[i, j]
• Conceptually simpler, but not as nice properties:

f

g

Boundary Issues

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Slide credit: S. Lazebnik

Border Padding

Circular

Replicate Symmetric

Zero Pad

Box Filter

Gaussian Filter

Gaussian Filter

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Source: C. Rasmussen

Constant factor at front makes volume sum to unity

Standard Deviation

Source: K Grauman

σ = 2 with

30 x 30
kernel

σ = 5 with

30 x 30
kernel

Standard deviation σ: determines extent of smoothing

Changing Sigma

Kernel Width

Source: K Grauman

The Gaussian function has infinite support, but
discrete filters use finite kernels

Rule of thumb: set filter half-width to about 3σ

Complexity

What is the complexity of filtering an
n×n image with an m×m kernel?

Complexity

What is the complexity of filtering an
n×n image with an m×m kernel?

O(n2 m2)

Separable Convolution

G(x, y) =
1

2πσ2
exp (−

x2 + y2

2σ2)
=

1

2πσ
exp (−

x2

2σ2) 1

2πσ
exp (−

y2

2σ2)

Two dimensional Gaussian is product of two Gaussians:

f = f ***

Take advantage of associativity:

Complexity
What is the complexity of filtering an

n×n image with an m×m kernel?

O(n2 m2)

What if kernel is separable?

Complexity
What is the complexity of filtering an

n×n image with an m×m kernel?

O(n2 m2)

What if kernel is separable?

O(n2 m)

Denoising
Additive Gaussian Noise Gaussian Filter (sigma=1)

What’s wrong?
Salt and Pepper Noise Gaussian Filter (sigma=1)

Median Filter
• A median filter operates over a window by selecting the

median intensity in the window  
 
 
 
 
 
 

 Is median filtering linear?
Source: Kristen Grauman

Why use median?

Source: Kristen Grauman

What’s wrong?
Salt and Pepper Noise Median Filter 3x3

Median Filtering
Median 3x3 Median 5x5 Median 9x9

Image Gradients

Image Gradients

How does intensity
change as you move

left to right?

How do you take the
derivative of an image?

First Derivative

* [−1,1] =

* [−1,1]T =

∂I
∂x

∂I
∂y

Second Derivative

* [−1,1] =

* [−1,1]T =

∂2I
∂x2

∂2I
∂y2

Image Gradients

Source: Seitz and Szeliski

What causes an edge?

Source: G Hager

What causes an edge?

Source: G Hager

Surface normal discontinuities

What causes an edge?

Source: G Hager

Boundaries of material properties

What causes an edge?

Source: G Hager

Boundaries of material properties

What causes an edge?

Source: G Hager

Boundaries of lighting

Edge Types

Source: G Hager

What is an edge?

Source: G Hager

What about noise?

Source: G Hager

Handling Noise
• Filter with a Gaussian to smooth, then take gradients

• But, convolution is linear

* [−1,1]T * [−1,1]T =

* [−1,1] * [−1,1] =

Gaussian Filter Laplacian Filter

The Laplacian Filter
• Popularized by Marr and Hildreth in 1980 to locate

boundaries between objects

• Defined as the sum of second order partial derivatives:

∇I =
∂2I
∂x2

+
∂2I
∂y2

Aside: Gabor Filters
Cosine wave multiple by a Gaussian

Source: MathWorks

ψ(x, y) = e− x2 + y2

2σ2 cos(2πμx)

Aside: Human Visual System

Aside: Cat Visual System

Source: Antonio Torralba

Detection

Finding Boundaries
f

g

∂2f
∂x2

+
∂2f
∂y2

> λ

Finding Things

Source: James Hays, Deva Ramanan

f * gf

g

Source: James Hays, Deva Ramanan

f

g
fij

gθij

fT
ij g = ∥fij∥∥g∥ cos θij

Response for one window:

fij

Detection by Filtering

Source: James Hays, Deva Ramanan

f * (g − ḡ)f

g

True detections

False detections

Find the filter

Detection by Filtering

Filter Response Thresholded

Source: James Hays, Deva Ramanan

True detections

Sum of Squared Differences

1-sqrt(SSD) Thresholded

SSD[i, j] = ∥fij − h∥2
2

= (fij − h)
T

(fij − h)
How do you write

this as a linear filter?

Source: Deva Ramanan

Sum of Squared Differences
What does SSD do here?

1-sqrt(SSD)

Normalized Cross Correlation
NCC[i, j] =

fT
ij h

∥fij∥∥h∥
= cos θij

Source: Deva Ramanan

Intra-class variance

Convolutional Networks
Convolution is building blocks for modern object
recognition systems

LeNet5

Pyramids

Scale

Image Pyramids

Image: Wikipedia

• Recursively resize image by
a factor of two

• Called pyramid because it
looks like a pyramid

• Invariance to scale by
running operation over each
level of the pyramid

How to resize images?

Skip every

other pixel

Why does this look bad?

Aliasing

Source: Efros

Aliasing

Source: Efros

Gaussian Pyramids
1. Convolve with Gaussian filter

2. Subsample every other pixel

3. Repeat

Laplacian Pyramids
1. Convolve with Laplacian filter

2. Subsample every other pixel

3. Repeat

Store downsampled image,

not gradients

Recovering Image

Upsample

Add

Level L

Image L-1

Image L

Laplacian Pyramids
• Compression

• Incremental transmission

Applications:

Image Blending

Image Blending

Image Blending
Image A Image B

Region R

Image Blending

Next Class: Repetition

