Image Processing I

Computer Vision Fall 2018 Columbia University

Homework 1

- Posted online today
- Due September 24 before class starts
- Turn in PDF and your code online

Office Hours

- **Carl:** Monday 4:30pm to 5:30pm, CSB 502
- Oscar: Thursday 3-4pm, Mudd 500
- Xiaoning: Monday, 5-6pm, CS TA Room
- Bo: Tuesday, 3-4pm, CS TA Room
- James: Thursday 12-1pm, CS TA Room
- Luc: Tuesday 4-5pm, CS TA Room

Image Formation

Object

Film

Image Formation

Add a barrier to block off most of the rays

Image denoising

Average many photos!

What if just one?

Reminder: Images as Functions

234	7	89	7	98	98	7	9	7	5
43	7	0	123	4	13	454	23	5	87
67	5	76	4	3	56	67	87	65	45
97	0	6	3	6	25	7	3	587	8
78	5	54	7	876	71	54	76	9	75
45	81	67	78	78	5	4	75	86	8
5	4	3	35	8	256	6	4	3	36
7	6	64	3	4	7	77	76	4	54
64	35	46	46	64	56	7	56	4	7
75	464	576	75	75	75	57	64	75	75

F[x, y]

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0				

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			
			?			

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

We want to remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve

For a filter to be linear, it must satisfy two properties:

- filter(im, f1 + f2) = filter(im, f1) + filter(im, f2)
- C * filter(im, f1) = filter(im, C * f1)

Convolution

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Convolution

- Let f be an image/function, and g is the kernel/filter
- The convolution is defined as:

$$(f * g)[x, y] = \sum_{i,j} f[x - i, y - j]g[i, j]$$

Convolution $(f * g)[x, y] = \sum_{i,j} f[x - i, y - j]g[i, j]$

Convolution $(f * g)[x, y] = \sum_{i,j} f[x - i, y - j]g[i, j]$

0	0	0		
0	1	0		
0	0	0		

?

0	0	0	
0	1	0	
0	0	0	

0	0	0
0	0) 1
0	C	0

?

Translation Filter

?

Blur Filter

?

Sharpening Filter

Sharpening

before

Sharpening

Image

Image

Blurred

Detail

Sharpened

Convolution Properties

Commutative:

F * H = H * F

Associative: (F * H) * G = F * (H * G)

Distributive: (F * G) + (H * G) = (F + H) * G

Convolution Properties

Scale: filter(A * f) = A * filter(f)

Shift Invariance:

filter(shift(f)) = shift(filter(f))

Cross-Correlation

• Conceptually simpler, but not as nice properties:

$$(f * g)[x, y] = \sum_{i,j} f[x + i, y + j]g[i, j]$$

Boundary Issues

Border Padding

Zero Pad

Circular

Replicate

Symmetric

Box Filter

Gaussian Filter

Gaussian Filter

 $G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$

0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Constant factor at front makes volume sum to unity

Standard deviation σ : determines extent of smoothing

Changing Sigma

Kernel Width

The Gaussian function has infinite support, but discrete filters use finite kernels

Rule of thumb: set filter half-width to about 3σ

Complexity

What is the complexity of filtering an n×n image with an m×m kernel?

Complexity

What is the complexity of filtering an n×n image with an m×m kernel?

O(n² m²)

Separable Convolution

Two dimensional Gaussian is product of two Gaussians:

$$G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right)$$

Take advantage of associativity:

$$f \ast = f \ast \ast$$

Complexity

What is the complexity of filtering an n×n image with an m×m kernel?

O(n² m²)

What if kernel is separable?

Complexity

What is the complexity of filtering an n×n image with an m×m kernel?

O(n² m²)

What if kernel is separable?

O(n² m)

Denoising

Additive Gaussian Noise

Gaussian Filter (sigma=1)

What's wrong?

Salt and Pepper Noise

Gaussian Filter (sigma=1)

Median Filter

• A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

Why use median?

filters have width 5 :

What's wrong?

Salt and Pepper Noise

Median Filter 3x3

Median Filtering

Median 3x3

Median 5x5

Median 9x9

Image Gradients

Image Gradients

How does intensity change as you move left to right?

How do you take the *derivative* of an image?

First Derivative

*[-1,1] =

 $*[-1,1]^{T} =$

дI ∂x

 ∂I

 ∂y

Second Derivative

 $*[-1,1]^{T} =$

Image Gradients

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

It points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Object Boundaries

Surface normal discontinuities

Boundaries of material properties

Boundaries of material properties

Boundaries of lighting

Edge Types

Step	
Ridge	Which of these do you suppose a derivative filter detects best?

Roof

What is an edge?

Change is measured by derivative in 1D

- Biggest change, derivative has maximum magnitude
- Or 2nd derivative is zero.

What about noise?

Derivative is high everywhere. Must smooth before taking gradient.

mmmmmmmm

monormon

Handling Noise

- Filter with a Gaussian to smooth, then take gradients
- But, convolution is linear

[-1,1][-	1,1] =
--------	------	--------

 $[-1,1]^T * [-1,1]^T =$

The Laplacian Filter

- Popularized by Marr and Hildreth in 1980 to locate boundaries between objects
- Defined as the sum of second order partial derivatives:

$$\nabla I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Aside: Gabor Filters

Cosine wave multiple by a Gaussian

$$\psi(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}} cos(2\pi\mu x)$$

Aside: Human Visual System

Aside: Cat Visual System

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 7, JULY 1988

Fig. 5. Top row: illustrations of empirical 2-D receptive field profiles measured by J. P. Jones and L. A. Palmer (personal communication) in simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor elementary function for each neuron, described by (10). Bottom row: residual error of the fit, indistinguishable from random error in the Chisquared sense for 97 percent of the cells studied.

Detection

Finding Boundaries

8

Finding Things

8

Detection by Filtering

g

.

Response for one window: $f_{ij}^T g = \|f_{ij}\| \|g\| \cos \theta_{ij}$

Detection by Filtering

Find the filter g

$$f^*(g-\bar{g})$$

Filter Response

Thresholded

Source: James Hays, Deva Ramanan

Sum of Squared Differences

$$SSD[i, j] = \|f_{ij} - h\|_{2}^{2}$$
$$= \left(f_{ij} - h\right)^{T} \left(f_{ij} - h\right)$$

How do you write this as a linear filter?

1-sqrt(SSD)

Sum of Squared Differences

What does SSD do here?

1-sqrt(SSD)

Source: Deva Ramanan

Normalized Cross Correlation

$$NCC[i, j] = \frac{f_{ij}^T h}{\|f_{ij}\| \|h\|} = \cos \theta_{ij}$$

Intra-class variance

Convolutional Networks

Convolution is building blocks for modern object recognition systems

LeNet5

Pyramids

Scale

Image Pyramids

- Recursively resize image by a factor of two
- Called pyramid because it looks like a pyramid
- Invariance to scale by running operation over each level of the pyramid

How to resize images?

Why does this look bad?

Aliasing

Aliasing

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Gaussian Pyramids

- 1. Convolve with Gaussian filter
- 2. Subsample every other pixel
- 3. Repeat

Laplacian Pyramids

- 1. Convolve with Laplacian filter
- 2. Subsample every other pixel
- 3. Repeat

Recovering Image

Laplacian Pyramids

Applications:

- Compression
- Incremental transmission

. -

Image Blending

(d)

(h)

(1)

Image Blending

General Approach:

- 1. Build Laplacian pyramids LA and LB from images A and B
- 2. Build a Gaussian pyramid GR from selected region R
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

Image Blending

© prof. dmartin

Next Class: Repetition

