Activity Recognition

Computer Vision Fall 2018 Columbia University

Many slides from Bolei Zhou

Project

- How are they going? About 30 teams have requested GPU credit so far
- Final presentations on December 5th and 10th
 - We will assign you to dates soon
- Final report due December 10 at midnight
- Details here: http://w4731.cs.columbia.edu/project

Challenge for Image Recognition

• Variation in appearance.

Challenge for Activity Recognition

- Describing activity at the proper level
- Image recognition? Skeleton recognition? No motion needed? Which activities?

Challenge for Activity Recognition

 Describing activity at the proper level

A chain of events Making chocolate cookies

What are they doing?

What are they doing?

A TO B: STEPPING DOWN FROM THE CURB A TO C: CROSSING STREET A TO D: WALKING TO SCHOOL A TO E: WORKING TO "PASS" FROM THE THIRD GRADE A TO F: GETTING AN EDUCATION A TO G: CLIMBING TO THE TOP IN LIFE

Barker and Wright, 1954

Vision or Cognition?

- KTH Dataset: recognition of human actions
- 6 classes, 2391 videos

https://www.youtube.com/watch?v=Jm69kbCC17s

Recognizing Human Actions: A Local SVM Approach. ICPR 2004

- UCF101 from University of Central Florida
- 101 classes, 9,511 videos in training

https://www.youtube.com/watch?v=hGhuUaxoclE

UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild. 2012

- Kinetics from Google DeepMind
- 400 classes, 239,956 videos in training

https://deepmind.com/research/open-source/open-source-datasets/kinetics/

- Charades dataset: Hollywood in Homes
- Crowdsourced video dataset

The Charades Dataset

You Tube

http://allenai.org/plato/charades/

Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding. ECCV'16

- Charades dataset: Hollywood in Homes
- Crowdsourced video dataset

Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding. ECCV'16

Example annotated videos from the Charades dataset

Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding

- Something-Something dataset: human object interaction
- 174 categories: 100,000 videos
- Holding something
- Turning something upside down
- Turning the camera left while filming something
- Opening something

Poking a stack of something so the stack collapses

something

https://www.twentybn.com/datasets/something-something

Plugging something into

Single-frame image model

Single Frame

41.1%

41.1%

41.1%

40.7%

mountain unicycling: 0.280 canyoning: 0.164 base jumping: 0.124

Sequence of frames?

Long-term Recurrent Convolutional Networks for Visual Recognition and Description. CVPR 2015

Recurrent Neural Networks (RNNs)

In the above diagram, a chunk of neural network, A, looks at some input x_i and outputs a value h_i . A loop allows information to be passed from one step of the network to the next.

Recurrent Neural Networks (RNNs)

An unrolled recurrent neural network.

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor

Recurrent Neural Networks (RNNs)

When the gap between the relevant information and the place that it's needed is small, RNNs can learn to use the past information

Long-term dependencies - hard to model!

But there are also cases where we need more context.

Credit: Christopher Olah

From plain RNNs to LSTMs

From plain RNNs to LSTMs

(LSTM: Long Short Term Memory Networks)

LSTMs Step by Step: Memory

Cell State / Memory

The LSTM does have the ability to remove or add information to the cell state, carefully regulated by structures called gates

LSTMs Step by Step: Forget Gate

Should we continue to remember this "bit" of information or not?

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

The first step in our LSTM is to decide what information we're going to throw away from the cell state. This decision is made by a sigmoid layer called the "forget gate layer."

LSTMs Step by Step: Input Gate

Should we update this "bit" of information or not? If so, with what?

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

The next step is to decide what new information we're going to store in the cell state. This has two parts. First, a sigmoid layer called the "input gate layer" decides which values we'll update. Next, a tanh layer creates a vector of new candidate values, \tilde{C}_t , that could be

added to the state.

Credit: Christopher Olah

LSTMs Step by Step: Memory Update

Decide what will be kept in the cell state/memory

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTMs Step by Step: Output Gate

Should we output this "bit" of information?

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

This output will be based on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell state we're going to output. Then, we put the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

Complete LSTM - A pretty sophisticated cell

Show and Tell: A Neural Image Caption Generator

Long-term Recurrent Convolutional Networks for Visual Recognition and Description. CVPR 2015

Motivation: Separate visual pathways in nature

Sources: "Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991). "A cortical representation of the local visual environment", Nature. 392 (6676): 598–601, 2009 https://en.wikipedia.org/wiki/Two-streams_hypothesis

2-Stream Network

A.		Spatial stream ConvNet								
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	class
	Temporal stream ConvNet								fusion	
input video	multi-frame optical flow	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	

Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Temporal segment network

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016

3D convolutional Networks

2D convolutions

Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

3D convolutional Networks

• 3D filters at the first layer.

Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

Temporal Relational Reasoning

• Infer the temporal relation between frames.

Poking a stack of something so it collapses

Temporal Relational Reasoning

• It is the temporal transformation/relation that defines the activity, rather than the appearance of objects.

Poking a stack of something so it collapses

Temporal Relations in Videos

2-frame relations

10

4-frame relations

Framework of Temporal Relation Networks

Something-Something Dataset

 100 K videos from 174 human-object interaction classes.

Moving something away from something

Plugging something into something

Pulling two ends of something so that it gets stretched

Jester Dataset

• 140 K videos from 27 gesture classes.

Zooming in with two fingers

Thumb down

Drumming fingers

Experimental Results

On Something-Something dataset

model	Top1 acc.(%)	Top5 acc.
single frame	11.41	33.39
2-frame TRN	22.23	48.80
3-frame TRN	26.22	54.15
4-frame TRN	29.83	58.21
5-frame TRN	30.39	58.29
7-frame TRN	31.01	59.24
MultiScale TRN	33.01	61.27
MultiScale TRN (10-crop)	34.44	63.20

model	Top1 acc.(%)
Yana Hasson	25.55
Harrison.AI	26.38
I3D by 8	27.23
Guillaume Berger	30.48
Besnet (Top1 on leaderboard)	31.66
MultiScale TRN	33.60

Experimental Results

• On Jester dataset

model	Top1 acc.(%)	Top5 acc.
single frame	63.60	92.44
2-frame TRN	75.65	94.40
MultiScale TRN	93.70	99.59
MultiScale TRN (10-crop)	95.31	99.8 6

model	Top1 acc.(%)
20BN's Jester System	82.34
VideoLSTM	85.86
Guillaume Berger	93.87
Ford's Gesture Recognition System	94.11
Besnet (Top1 on leaderboard)	94.23
MultiScale TRN	94.78

Importance of temporal orders

Pirsiavash, Vondrick, Torralba. Assessing Quality of Actions, ECCV 2014

1. Track and compute human pose

- 1. Track and compute human pose
- 2. Extract temporal features
 - take FT and histogram?
 - use deep network?

- 1. Track and compute human pose
- 2. Extract temporal features
 - take FT and histogram?
 - use deep network?
- 3. Train regression model to predict expert quality score

Assessing diving

Feedback

Summarizing

Assessing figure skating

