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Single-modality video representations

Vision Hearing
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Same audio,
different video!

(McGurk 1976)



Object Recognition
Objects

Sound



Natural Synchronization
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Convolutional Neural Network

SoundNet
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Sound Recognition

Classitying sounds in ESC-50

Method Accuracy

Chance 2%

Human Consistency 81%



Sound Recognition

Classitying sounds in ESC-50

Method Accuracy
Chance 2%
SVM-MFCC 39%
Random Forest 44%
CNN, Piczak 2015 64 %

Human Consistency 81%



Sound Recognition

Classitying sounds in ESC-50

Method Accuracy
Chance 2%
SVM-MFCC 39%
Random Forest 44%
CNN, Piczak 2015 64 %
SoundNet 74%

Human Consistency 81%



Vision vs Sound

Low-dimensional embeddings
via Maaten and Hinton, 2007
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Sensor Power Consumption

Camera Microphone



What does it learn”
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Audiovisual Grounding

Input video

Which regions are
making which sounds”




Audiovisual Grounding
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Which objects make which sounds®

6. Assembly Line _




The sound of clicked object

6. Assembly Line _




The sound of clicked object
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The sound of clicked object
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Collect unlabeled videos




Mix Sound Tracks




How to recover originals”

Audio-only:
* |ll-posed
* permutation problem
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Audiovisual Model
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Original Audio




What does this sound like”
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What does this sound like”
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What does this sound like”
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What regions are making sound?

Original Video

Estimated Volume



What sounds are they making”

Original Video

Embedding (projected and visualized as color)



Adjusting Volume




| earning audio-visual
correspondences

— real or fake?

Slide credit: Andrew Owens
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|[dea #1: random pairs

Arandjelovic, Zisserman. ICCV 2017 Slide credit: Andrew Owens



Audio-visual correspondence detector network

Fusion layers +>Correspond?
Yes) / No

Arandjelovic, Zisserman. ICCV 2017



Vision higaden units

Fingerpicking Lawn mowing P. accordion P. bass guitar i Bowling
, W c———— . 1 (U5 AT j——

Arandjelovic, Zisserman. ICCV 2017



Sound hidden units

Concert So

rt Water  Underwater  Windy Outdoor
. Iy &

ENCIAL FONTE MONTE - Bultrins-O
sala para 2 ambientes, 2 quartos
(1 suite), 1 WC sodial, cozinha, érea
servigo, 1 vaga ¢ Area privativa de
a50m*

Excelente localizagho,
mobilidade urbana
excepcional nos Bultrins
A partir de R$165mil

Arandjelovic, Zisserman. ICCV 2017



Sound Recognition

(a) ESC-50 (b) DCASE

Method Accuracy Method Accuracy
SVM-MFCC [26] 39.6% RG [27] 69%
Autoencoder [”] 39.9% LTT [19] 72%
Random Forest [20] 44.3% RNH [2¥] T7%
Piczak ConvNet [25] 64.5% Ensemble [3”] 78%
SoundNet [?] 74.2% SoundNet [/] 88%
Ours random 62.5% Ours random 85%
Ours 79.3 % Ours 93 %
Human perf. [206] 81.3%

Arandjelovic, Zisserman. ICCV 2017



Visual Recognition

Method Top 1 accuracy
Random 18.3%
Pathak et al. [24] 22.3%
Krdhenbiihl et al. [16] 24.5%
Donahue et al. [ /] 31.0%
Doersch et al. [0] 31.7%
Zhang et al. [36] (imit: [16]) 32.6%
Noroozi and Favaro [ 1] 34. 7%
Ours random 12.9%
Ours 32.3%

Linear classifier on top of features (ImageNet)

Arandjelovic, Zisserman. ICCV 2017



|[dea #1: random pairs

Slide credit: Andrew Owens



|[dea #2: time-shifted pairs

Slide credit: Andrew Owens



|[dea #2: time-shifted pairs
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Fused audio-visual representation

Aligned vs. misaligned
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Slide credit: Andrew Owens



Fused audio-visual representation
Aligned vs.*misaligned
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What does the network learn?

{ Aligned vs. misaligned

Slide credit: Andrew Owens
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Playing organ




Playing organ



Playing organ
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Application: on/off-screen source separation

Task: separate on-screen sounds from
background noise

Slide credit: Andrew Owens



Creating training data

Slide credit: Andrew Owens



On/off-screen source separation
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Slide credit: Andrew Owens



On/off-screen source separation
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On/oft-screen source separation

KTralnlng

e 4-sec. videos
 VoxCeleb + AudioSet

* |L1lossonlog spec.

 No labels or face detection
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Slide credit: Andrew Owens
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Off-screen
prediction
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