Vision and Sound

Computer Vision Fall 2018 Columbia University

Single-modality video representations

Slide credit: Andrew Owens

(McGurk 1976)

BBCTW

Same audio, different video!

(McGurk 1976)

Object Recognition

Natural Synchronization

Sound

Vision

Millions of Unlabeled Videos

rhythm

SoundNet

yard: 9.89%

lawn: 7.39%

English springer: 8.65% Welsh springer spaniel: 2.20% Border collie: 1.65%

restaurant: 11.79% dining room: 7.18% coffee shop: 6.70%

candle: 15.90% restaurant: 6.83% groom: 2.78%

Sound Recognition

Classifying sounds in ESC-50

Method	Accuracy	
Chance	2%	

Human Consistency

81%

Sound Recognition

Classifying sounds in ESC-50

Method	Accuracy
Chance	2%
SVM-MFCC	39%
Random Forest	44%
CNN, Piczak 2015	64%

Human Consistency

Sound Recognition

Classifying sounds in ESC-50

Method	Accuracy	
Chance	2%	
SVM-MFCC	39%	
Random Forest	44%	
CNN, Piczak 2015	64%	
SoundNet	74% 🗡 10% ga	IN
Human Consistency	81%	

Vision vs Sound

Low-dimensional embeddings via Maaten and Hinton, 2007

urban

nature

work-home

music–entertainment

sports

vehicles

Sound

Vision

Sensor Power Consumption

Layer 1

Man allen many with

~ ~ ~ ~ MAMMA MAMMA

Layer 5

Smacking-like

Layer 5

Chime-like

Scuba-like

Parents-like

Audiovisual Grounding

Which regions are making which sounds?

Audiovisual Grounding

Which objects make which sounds?

The sound of clicked object

The sound of clicked object

The sound of clicked object

Collect unlabeled videos

Mix Sound Tracks

How to recover originals?

Audio-only:

- Ill-posed
- permutation problem

Vision can help

Audiovisual Model

Audiovisual Model

Audiovisual Model

Original Audio

What does this sound like?

What does this sound like?

What does this sound like?

What regions are making sound?

Original Video

Estimated Volume

What sounds are they making?

Original Video

Embedding (projected and visualized as color)

Adjusting Volume

Volume 2	
•	×

Learning audio-visual correspondences

→ real or fake?

Learning audio-visual correspondences

Idea #1: random pairs

Arandjelovic, Zisserman. ICCV 2017

Audio-visual correspondence detector network

Vision hidden units

Sound hidden units

Sound Recognition

(a) ESC-50		(b) DCASE	
Method	Accuracy	Method	Accuracy
SVM-MFCC [26]	39.6%	RG [27]	69%
Autoencoder [2]	39.9%	LTT [19]	72%
Random Forest [26]	44.3%	RNH [28]	77%
Piczak ConvNet [25]	64.5%	Ensemble [32]	78%
SoundNet [2]	74.2%	SoundNet [2]	88%
Ours random	62.5%	Ours random	85%
Ours	79.3%	Ours	93%
Human perf. [26]	81.3%		

Visual Recognition

Method	Top 1 accuracy
Random	18.3%
Pathak <i>et al</i> . [24]	22.3%
Krähenbühl <i>et al</i> . [16]	24.5%
Donahue <i>et al</i> . [7]	31.0%
Doersch <i>et al</i> . [6]	31.7%
Zhang <i>et al</i> . [36] (init: [16])	32.6%
Noroozi and Favaro [21]	34.7%
Ours random	12.9%
Ours	32.3%

Linear classifier on top of features (ImageNet)

Idea #1: random pairs

Idea #2: time-shifted pairs

Idea #2: time-shifted pairs

Fused audio-visual representation

Fused audio-visual representation

What does the network learn?

Aligned vs. misaligned Aligned vs. misa

Class activation map (Zhou et al. 2016)

Top responses per category (speech examples omitted)

top baller

Dribbling basketball

ILLERBOOTCAMPLCOM

1.81

Dribbling basketball

Dribbling basketball

Playing organ

Chopping wood

Chopping wood

Application: on/off-screen source separation

Task: separate on-screen sounds from background noise

Creating training data

Skrthetensounofffesteren

On/off-screen source separation

On/off-screen source separation

Slide credit: Andrew Owens

Input video

.

OCBSN

On-screen prediction

Off-screen prediction

Input video

ONE-ON-ONE

TRUMP CALLS FOR DOJ INVESTIGATION OF NY TIMES OP-ED

Las Vegas

.....

6:04 PM PT

CUOMO PRIME TIME

On-screen prediction

TRUMP CALLS FOR DOJ INVESTIG

On-screen prediction

