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Project

Presentation schedule posted on Piazza.

Review it ASAP and let us know of any problems by
Wednesday

For those presenting on December 5: OK to have some
experiments in progress

Final reports due December 10 midnight — no
extensions!



GPU Credits

e |f you have not requested GPU credits, do so
iImmediately.

e \We are starting to give them away...



Homeworks

e HW3 is back: median is 100% !
e HW4 grades soon

e HWS5 due today



Final Grades

 We will likely curve down, but we will guarantee:
e 90% is at least A
e 80% is at least B

e /0% is at least C



Next Semester

e E6998 Advanced Computer Vision, offered Spring 2019

e Focuses on research frontier of computer vision and
applied machine learning

e Make sure to fill out survey to get off wait list
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'l stand at the window and see a house, trees, sky. Theoretically
| might say there were 327 brightnesses and nuances of colour.
Do | have "327"? No. | have sky, house, and trees.”

— Max Wertheimer, 1923



Representation learning

“Coral”

Compact mental
representation

Slide credit: Phillip Isola



Representation learning

Good representations are:

“Coral”

1. Compact

2. Explanatory

3. Disentangled

4. Interpretable

Slide credit: Phillip Isola
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Training Testing

Object recognition Place recognition

> uFiShn

Often, what we will be “tested” on is to
learn to do a new thing.

Slide credit: Phillip Isola



Pretraining Finetuning Testing

Object recognition Place recognition Place recognition
- ™ Fish > -1:|~> bedroo M -'|:|~> 2
Alotofdata Alitle data

Finetuning starts with the representation learned
on a previous task, and adapts it to perform well
on a new task.

Slide credit: Phillip Isola



It we keep on finetuning for every new datapoint or task that
comes our way, we get online learning. Humans seem to do
this, we never stop learning.
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Supervised object recognition

Learner

image X label Y

Slide credit: Phillip Isola



label Y
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Supervised object recognition

label Y
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Supervised object recognition

label Y

Slide credit: Phillip Isola






Kitten Carousel
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A

Fig. 1. Apparatus for equating motion and consequent visual feedback for an actively moving (A)
and a passively moved (P) S.

Held and Hein, 1963



Supervised

. Vision in nature
computer vision

Hand-curated training data  :  Raw unlabeled training data
+ Informative .+ Cheap

- Expensive - Noisy

- Limited to teacher’s . - Harder to interpret
knowledge :

Slide credit: Phillip Isola



Learning from examples

(aka supervised learning)

Training data

{$1,y1}
{$2,y2}
{$3,y3}

— Learner | — f: X — Y

N
f* = arg minZﬁ(f(CCi)ayz’)

fer 4

Slide credit: Phillip Isola



_earning without examples

(includes unsupervised learning and reinforcement learning)

Data

{T1}
{z2}
{z3}

%

Learner

Slide credit: Phillip Isola



Unsupervised Representation Learning

Data

{T1}
{z2}
{z3}

%

Learner

—Representations

Slide credit: Phillip Isola



Unsupervised Representation Learning

“Coral”

Compact mental
representation

Slide credit: Phillip Isola



Unsupervised Representation Learning

compressed iImage
code (vector z)

L4
L4

e Cceees C
QQQ%QQQ
oI ololeP

Slide credit: Phillip Isola



Unsupervised Representation Learning

compressed iImage
code (vector z)
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le.g., Hinton & Salakhutdinov, Science 2006]



Autoencoder
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le.g., Hinton & Salakhutdinov, Science 2006]



Data compression

Data Data

le.g., Hinton & Salakhutdinov, Science 2006]



Data prediction

— — | — o
Some Other
data data

Slide credit: Phillip Isola



Grayscale image: L channel Color information: ab channels
X € RHXWXl Y € RHXWXZ

L]~ {[ab

[Zhang, Isola, Efros, ECCV 2016]




Ansel Adams, Yosemite Valley Bridge




Result of [Zhang et al., ECCV 2016]




Image colorization

Input X Output y

Training data

[Zhang et al., ECCV 2016]




Choosing loss and representation

Input Output Ground truth

Slide credit: Phillip Isola
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Prediction for a single pixel i,]
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Slide credit: Phillip Isola



y c RHXWXK

one-hot representation of K discrete classes

y c RHXWXZ
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Prediction for a single pixel i,]
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L(y, fo(x)) = H(y,sof tmax(fs(x)))

Slide credit: Phillip Isola



/Zhang et al. 2016 Ground truth

L(x,y) = H(y,softmax(fg(x)))

Slide credit: Phillip Isola



Regression” “Classification”

® Continuous-valued prediction ® Discrete-valued prediction
® (Usually) models unimodal distribution ® Models multimodal distribution






Instructive failure




Instructive failure
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Deep Net “Electrophysiology”
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[Zeiler & Fergus, ECCV 2014]
[Zhou et al., ICLR 2015]



Stimuli that drive selected neurons (convb layer)

flowers



X X
O
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O
Image Reconstructed
compressed image image

code (vector 2)

|s the code Informative Logistic regression:
about object class ¥ 7 y = o(Wz + b)




IEE Classification performance
X > |:||:| | X 40| =O—autoencoder
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Task from [Russakovsky et al. 2015]



Self-supervised learning

Common trick:

® Convert “unsupervised”
problem into “supervised”
empirical risk minimization

® Do so by cooking up
“labels” (prediction targets
from the raw data itself




Multisensory self-supervision

Supervised Self-Supervised

- derives label from a
co-occurring input to

- implausible label

"COW" another modality
ki VA
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Virginia de Sa. Learning Classification with Unlabeled Data. NIPS 1994,
[see also “Six lessons from babies”, Smith and Gasser 2005]



Ambient Sound Provides
Supervision for Visual Learning

Andrew Owens Jiajun Wu Josh McDermott
William Freeman Antonio Torralba

MIT, Google Research



Slide credit: Andrew Owens



Audio Is invariant to many visual transformations
Image space

Lo

Audio space

(20

Slide credit: Andrew Owens
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Audio Is invariant to many visual transformations
Image space
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Audio Is invariant to many visual transformations
Image space

Audio space

Slide credit: Andrew Owens



Predicting sound

- Flickr video dataset.

- 180K videos, 10 random frames from each.

- Trained from scratch

ound texture
- 4 [McDermott &
Simoncelli 2011]

ConvNet

Slide credit: Andrew Owens



Predicting sound

I

Video frame ConvNet

Sound feature

Slide credit: Andrew Owens



ConvNet -
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Slide credit: Andrew Owens
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What did the network learn?

@ @ ® Audio label

Slide credit: Andrew Owens



What did the network learn?

-~ “person” ,o”
PASCAL VOC 2007 e
: v 77 o % ' o ’0 .
pOO|5 “"’ "' O

Slide credit: Andrew Owens



PASCAL VOC Classification
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Sound Context Tracking EgomotionSpectrum Visual ImageNet
[Doersch15]Wang15] [Agrawal15] only clusters[Krizhevsky12]

Slide credit: Andrew Owens



SUN397 Scene Recognition

% acc.

42.1%

40

Sound Context TrackingegomotionPlaces
[Doersch1@Vang1bpgrawal1qFZhou14]

Slide credit: Andrew Owens



What did the network learn?

Audio label
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Slide credit: Andrew Owens



Unit visualizations

Top responses (unit #90

Slide credit: Andrew Owens



Unit visualizations

256

Slide credit: Andrew Owens



Unit visualizations

256

Slide credit: Andrew Owens



Unsupervised visual representation

learning by context prediction
[Carl Doersch, Abhinav Gupta, Alexel A. Efros, ICCV 2015]



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and

[Slide credit: Carl Doersch]



Context Prediction for Images

[Slide credit: Carl Doersch]



Semantics from a non-semantic task

[Slide credit: Carl Doersch]



Relative Position Task

DD <8 poglsible locations

‘Classifier‘
7 N
CNN CNN
A A Randomly Sample Patch

Sample Second Patch

[Slide credit: Carl Doersch]



Patch Embedding (representation)
Input Nearest Nelghbors
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Note: connects across instances!

[Slide credit: Carl Doersch]



Learning by Rotating

Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris, Praveer Singh, Nikos Komodakis



ImageNet

Context

Jigsaw Puzzle

Inpainting
Colorization
Tracking
Counting

Rotation

How are we doing?

Classification

78.2%
55.3%
67.6%
56.5%
61.5%
58.7%
67.7%

72.9%

Detection
56.8%
46.6%
53.2%
44 5%
46.9%
47.4%
51.4%

54.4%

PASCAL VOC 2007

Segmentation

48.0%

37.6%
30.0%

35.6%

36.6%

39.1%



Prediction hypothesis |

1. To survive, biological
agents are constantly
trying to anticipate, to
poredict sensations

2. This trains up
representations useful for
orediction — surfaces,
objects, events!




Yann LeCun’s cake:
1. Cake is unsupervised representation learning
2. Frosting Is supervised transfer learning

3. Cherry on top is reinforcement learning (model-based RL)



