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Homework 2

• Posted online Monday


• Due October 8 before class starts — no exceptions! 


• Get started early — covers material up to today



Image Gradients 
Review
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Second Derivative
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Image Gradients

Source: Seitz and Szeliski



What is an edge?

Source: G Hager 



What about noise?

Source: G Hager 



Handling Noise
• Filter with a Gaussian to smooth, then take gradients


• But, convolution is linear

* [−1,1]T * [−1,1]T =

* [−1,1] * [−1,1] =

Gaussian Filter Laplacian Filter



Edges



• Extract information

• Recognize objects


• Help recover geometry  
and viewpoint

Vanishing 
 point

Vanishing 
 line

Vanishing 
 point

 Vertical vanishing 
 point 

(at infinity)

Why do we care 
about edges?



Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Background Texture Shadows

Low-level edges vs. perceived contours



Kanizsa Triangle



Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Source: L. Lazebnik

Low-level edges vs. perceived contours

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Credit: David Martin
Berkeley Segmentation Data Set 
David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik







[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from 
humans which 
combination of 
features is most 
indicative of a 
“good” contour?





[D. Martin et al. PAMI 2004]

What features are responsible 
for perceived edges?

Feature profiles 
(oriented energy, 
brightness, color, 
and texture 
gradients) along 
the patch’s 
horizontal diameter

Kristen Grauman, UT-Austin



[D. Martin et al. PAMI 2004]

Feature profiles 
(oriented energy, 
brightness, color, 
and texture 
gradients) along 
the patch’s 
horizontal diameter

Kristen Grauman, UT-Austin

What features are responsible 
for perceived edges?



Credit: David Martin



[D. Martin et al. PAMI 2004] Kristen Grauman, UT-Austin



Contour Detection

Source: Jitendra Malik: http://www.cs.berkeley.edu/~malik/
malik-talks-ptrs.html

Prewitt, 
Sobel, 
Roberts

Canny

Canny+opt 
thresholds

Learned 
with 
combined 
features

Human 
agreement



Canny Edge Detector
Widely used edge detector


John Canny’s masters thesis



Demonstrator Image



Canny edge detector
1. Filter image with x, y derivatives of Gaussian 

Source: D. Lowe, L. Fei-Fei



Derivative of Gaussian filter

x-direction y-direction



Compute Gradients

X Derivative of Gaussian Y Derivative of Gaussian

(x2 + 0.5 for visualization)



Canny edge detector

1. Filter image with x, y derivatives of Gaussian  
2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei



Compute Gradient Magnitude

sqrt( XDerivOfGaussian .^2  +  YDerivOfGaussian .^2 )          = gradient magnitude

(x4 for visualization)



Compute Gradient Orientation

• Threshold magnitude at minimum level 
• Get orientation via theta = atan2(gy, gx)



Canny edge detector
1. Filter image with x, y derivatives of Gaussian  
2. Find magnitude and orientation of gradient 
3. Non-maximum suppression: 

– Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression for each orientation

At pixel q:  
We have a maximum if the value 
is larger than those at both p and 
at r.  
Interpolate along gradient 
direction to get these values.

Source: D. Forsyth



Before Non-max Suppression

Gradient magnitude (x4 for visualization)



After non-max suppression

Gradient magnitude (x4 for visualization)



Canny edge detector
1. Filter image with x, y derivatives of Gaussian  
2. Find magnitude and orientation of gradient 
3. Non-maximum suppression: 

– Thin multi-pixel wide “ridges” to single pixel width 
4. ‘Hysteresis’ Thresholding

Source: D. Lowe, L. Fei-Fei



Assume the marked point is an 
edge point.  Then we construct 
the tangent to the edge curve 
(which is normal to the gradient 
at that point) and use this to 
predict the next points (here 
either r or s). 

Edge linking

Source: D. Forsyth



‘Hysteresis’ thresholding

• Two thresholds – high and low 
• Grad. mag. > high threshold? = strong edge 
• Grad. mag. < low threshold? noise 
• In between = weak edge 

• ‘Follow’ edges starting from strong edge pixels 
• Continue them into weak edges 

• Connected components (Szeliski 3.3.4)

Source: S. Seitz



Final Canny Edges

𝜎 = 2,  𝑡𝑙𝑜𝑤 = 0.05, 𝑡h𝑖𝑔h = 0.1



Effect of σ (Gaussian kernel spread/size)

Original 

The choice of σ depends on desired behavior 
• large σ detects large scale edges 
• small σ detects fine features

Source: S. Seitz

𝜎 = 4 2𝜎 = 2



Fitting



Fitting
• Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Slide credit: K. Grauman



Case study: Line fitting
• Why fit lines? Many objects characterized by presence of 

straight lines

• Wait, why aren’t we done just by running edge detection?
Slide credit: K. Grauman



• Extra edge points (clutter), 
multiple models: 
– which points go with which line, 

if any? 
• Only some parts of each line 

detected, and some parts are 
missing: 
– how to find a line that bridges 

missing evidence? 
• Noise in measured edge 

points, orientations: 
– how to detect true underlying 

parameters? 

Difficulty of line fitting

Slide credit: K. Grauman



Fitting: Main idea

Slide credit: L. Lazebnik

• Choose a parametric model to represent a set of 
features 

• Membership criterion is not local 
• Can’t tell whether a point belongs to a given model just by 

looking at that point 

• Three main questions: 
• What model represents this set of features best? 
• Which of several model instances gets which feature? 
• How many model instances are there? 

• Computational complexity is important 
• It is infeasible to examine every possible set of parameters and 

every possible combination of features



Fitting lines: Hough transform

• Given points that belong to a line, what 
is the line? 

• How many lines are there? 
• Which points belong to which lines? 

• Hough Transform is a voting technique 
that can be used to answer all of these 
questions. 
Main idea:  
1.  Record vote for each possible line on 

which each edge point lies. 
2.  Look for lines that get many votes.



Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces 
• A line in the image corresponds to a point in Hough space 
• To go from image space to Hough space: 

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz



Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces 
• A line in the image corresponds to a point in Hough space 
• To go from image space to Hough space: 

– given a set of points (x,y), find all (m,b) such that y = mx + b 

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0 
– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz



Finding lines in an image: Hough space

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)? 
• It is the intersection of the lines b = –x0m + y0 and  

b = –x1m + y1 

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)



Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) for the most 
prominent line in the image space? 

• Let each edge point in image space vote for a set of possible parameters in 
Hough space 

• Accumulate votes in discrete set of bins*; parameters with the most votes 
indicate line in image space.

x

y

m

b

image space Hough (parameter) space



Hough transform algorithm
Using the polar parameterization: 

Basic Hough transform algorithm 
1. Initialize H[d, θ]=0 
2. for each edge point I[x,y] in the image 

    for θ = [θmin  to  θmax ]  // some quantization 

    H[d, θ] += 1 

3. Find the value(s) of (d, θ) where H[d, θ] is maximum 
4. The detected line in the image is given by

H: accumulator array (votes)

d

θ

Time complexity (in terms of number of votes per pt)?

dyx =− θθ sincos

Source: Steve Seitz

θθ sincos yxd −=

θθ sincos yxd −=



Extensions
Extension:  Use the image gradient 

1. same 
2. for each edge point I[x,y] in the image 

    θ = gradient at (x,y) 

    H[d, θ] += 1 
3. same 
4. same 

(Reduces degrees of freedom) 

Extension 2 
• give more votes for stronger edges 

Extension 3 
• change the sampling of (d, θ) to give more/less resolution 

Extension 4 
• The same procedure can be used with circles, squares, or any other shape

θθ sincos yxd −=



Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r 
222 )()( rbyax ii =−+−

Image space Hough space

Intersection: 
most votes for 
center occur 
here.



Hough transform for circles
• Circle: center (a,b) and radius r 

222 )()( rbyax ii =−+−

Hough spaceImage space

b

a

r

• For an unknown radius r, unknown gradient direction



Hough transform for circles
• Circle: center (a,b) and radius r 

222 )()( rbyax ii =−+−

Hough spaceImage space

b

a

r

• For an unknown radius r, unknown gradient direction



Original Edges

Example: detecting circles with Hough
Votes: Penny

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny). 

Coin finding sample images from: Vivek Kwatra



Original Edges

Example: detecting circles with Hough
Votes: Quarter

Coin finding sample images from: Vivek Kwatra



Example: iris detection

• Hemerson Pistori and Eduardo Rocha Costa http://rsbweb.nih.gov/ij/plugins/
hough-circles.html

Gradient+threshold Hough space 
(fixed radius)

Max detections



Example: iris detection

• An Iris Detection Method Using the Hough Transform and Its Evaluation for Facial 
and Eye Movement, by Hideki Kashima, Hitoshi Hongo, Kunihito Kato, Kazuhiko 
Yamamoto, ACCV 2002.



Voting: practical tips

• Minimize irrelevant tokens first 

• Choose a good grid / discretization 

• Vote for neighbors, also (smoothing in accumulator 
array) 

• Use direction of edge to reduce parameters by 1 

• To read back which points voted for “winning” peaks, 
keep tags on the votes.

Too coarseToo fine ?



Hough transform: pros and cons
Pros 
• All points are processed independently, so can cope with 

occlusion, gaps 
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin 
• Can detect multiple instances of a model in a single pass 

Cons 
• Complexity of search time increases exponentially with the 

number of model parameters  
• Non-target shapes can produce spurious peaks in parameter 

space 
• Quantization: can be tricky to pick a good grid size



Seam Carving



Content-aware resizing

Traditional resizing

Seam carving: main idea

[Shai & Avidan, SIGGRAPH 2007]



[Shai & Avidan, SIGGRAPH 2007]

Seam carving: main idea



Seam Carving



Content-aware resizing

Intuition:  
• Preserve the most “interesting” content 

! Prefer to remove pixels with low gradient energy 
• To reduce or increase size in one dimension, 

remove irregularly shaped “seams” 
! Optimal solution via dynamic programming.

Slide credit: Kristen 
Grauman

Seam carving: main idea



Seam Carving



Let a vertical seam s consist of h positions that form an 8-
connected  path. 

Let the cost of a seam be: 
Optimal seam minimizes this cost: 
Compute it efficiently with dynamic programming.

Seam carving: algorithm

∑
=

=
h

i
isfEnergyCost

1
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=)( fEnergy

Slide credit: Kristen Grauman



How to identify the minimum cost seam?
• First, consider a greedy approach:

625
982
031

Energy matrix 
(gradient magnitude)

Slide credit: Kristen 
Grauman



row i-1

Seam carving: algorithm
• Compute the cumulative minimum energy for all possible 

connected seams at each entry (i,j): 

• Then, min value in last row of M indicates end of the 
minimal connected vertical seam.   

• Backtrack up from there, selecting min of 3 above in M.

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM

j-1

jrow i

M matrix:  
cumulative min energy 

(for vertical seams)

Energy matrix 
(gradient magnitude)

j j+1

Slide credit: Kristen 
Grauman



Example

625
982
031

Energy matrix 
(gradient magnitude)

M matrix 
(for vertical seams)

1458
983
031

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM

Slide credit: Kristen 
Grauman



Example

625
982
031

Energy matrix 
(gradient magnitude)

M matrix 
(for vertical seams)

1458
983
031

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM

Slide credit: Kristen 
Grauman



Real image example

Original Image Energy Map

Blue = low energy 
Red = high energy

Slide credit: Kristen 
Grauman



Other notes on seam carving
• Analogous procedure for horizontal seams  
• Can also insert seams to increase size of image in 

either dimension 
– Duplicate optimal seam, averaged with neighbors 

• Other energy functions may be plugged in 
– E.g., color-based, interactive,… 

• Can use combination of vertical and horizontal 
seams



Seam Carving



Original

Resized

Why did it fail?



Original Resized

Why did it fail?


