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Seam Carving



Content-aware resizing

Traditional resizing

Seam carving: main idea

[Shai & Avidan, SIGGRAPH 2007]



Seam Carving



[Shai & Avidan, SIGGRAPH 2007]

Seam carving: main idea



Seam Carving



Let a vertical seam s consist of h positions that form an 8-
connected  path. 

Let the cost of a seam be: 
Optimal seam minimizes this cost: 
Compute it efficiently with dynamic programming.

Seam carving: algorithm
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How to identify the minimum cost seam?
• First, consider a greedy approach:
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row i-1

Seam carving: algorithm
• Compute the cumulative minimum energy for all possible 

connected seams at each entry (i,j): 

• Then, min value in last row of M indicates end of the 
minimal connected vertical seam.   

• Backtrack up from there, selecting min of 3 above in M.
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Example
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Real image example

Original Image Energy Map

Blue = low energy 
Red = high energy

Slide credit: Kristen 
Grauman



Seam Carving



Original

Resized

Why did it fail?



Original Resized

Why did it fail?



Feature Descriptors



Core visual understanding task:  
finding correspondences between images

(a) incline L.jpg (img1) (b) incline R.jpg (img2) (c) img2 warped to img1’s frame

Figure 5: Example output for Q6.1: Original images img1 and img2 (left and center) and
img2 warped to fit img1 (right). Notice that the warped image clips out of the image. We
will fix this in Q6.2

H2to1=computeH(p1,p2)

Inputs: p1 and p2 should be 2⇥N matrices of corresponding (x, y)T coordinates
between two images.
Outputs: H2to1 should be a 3⇥ 3 matrix encoding the homography that best matches
the linear equation derived above for Equation 8 (in the least squares sense). Hint:

Remember that a homography is only determined up to scale. The Matlab functions
eig() or svd() will be useful. Note that this function can be written without an
explicit for-loop over the data points.

6 Stitching it together: Panoramas (30 pts)

We can also use homographies to create a panorama image from multiple views of the same
scene. This is possible for example when there is no camera translation between the views
(e.g., only rotation about the camera center), as we saw in Q4.2.

First, you will generate panoramas using matched point correspondences between images
using the BRIEF matching you implemented in Q2.4. We will assume that there is no error
in your matched point correspondences between images (Although there might be some
errors).

In the next section you will extend the technique to use (potentially noisy) keypoint
matches.

You will need to use the provided function warp im=warpH(im, H, out size), which
warps image im using the homography transform H. The pixels in warp_im are sampled
at coordinates in the rectangle (1, 1) to (out_size(2), out_size(1)). The coordinates of
the pixels in the source image are taken to be (1, 1) to (size(im,2), size(im,1)) and
transformed according to H.

• Q6.1 (15pts) In this problem you will implement and use the function (stub provided
in matlab/imageStitching.m):

[panoImg] = imageStitching(img1, img2, H2to1)

on two images from the Dusquesne incline. This function accepts two images and the
output from the homography estimation function. This function will:

10

Figure 6: Final panorama view. With homography estimated with RANSAC.

• a folder matlab containing all the .m and .mat files you were asked to write and
generate

• a pdf named writeup.pdf containing the results, explanations and images asked for
in the assignment along with to the answers to the questions on homographies.

Submit all the code needed to make your panorama generator run. Make sure all the .m

files that need to run are accessable from the matlab folder without any editing of the path
variable. If you downloaded and used a feature detector for the extra credit, include the
code with your submission and mention it in your writeup. You may leave the data folder
in your submission, but it is not needed. Please zip your homework as usual and submit it
using blackboard.

Appendix: Image Blending

Note: This section is not for credit and is for informational purposes only.

For overlapping pixels, it is common to blend the values of both images. You can sim-
ply average the values but that will leave a seam at the edges of the overlapping images.
Alternatively, you can obtain a blending value for each image that fades one image into the
other. To do this, first create a mask like this for each image you wish to blend:

mask = zeros(size(im,1), size(im,2));

mask(1,:) = 1; mask(end,:) = 1; mask(:,1) = 1; mask(:,end) = 1;

mask = bwdist(mask, ’city’);

mask = mask/max(mask(:));

The function bwdist computes the distance transform of the binarized input image, so this
mask will be zero at the borders and 1 at the center of the image. You can warp this mask
just as you warped your images. How would you use the mask weights to compute a linear
combination of the pixels in the overlap region? Your function should behave well where
one or both of the blending constants are zero.
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Source: Deva Ramanan



Example: image matching of landmarks

Correspondence + geometry estimation

Source: Deva Ramanan



Object recognition by matching

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples
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∑
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||si′j′ |− |rij ||

(|rij | + µd)
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where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.
Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P andQ.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.
We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-
more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑

i xinull = k.
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation
Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.
We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First
compute qa = min

∑

b Habxb. Note that from here on we
will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑

a(qa + ca)xa as a lower bound for
cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.
The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problemswithout changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requiresO(n2) time.

Sparse correspondence

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples
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||si′j′ |− |rij ||

(|rij | + µd)
(6)

where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.
Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P andQ.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.
We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-
more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑

i xinull = k.
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation
Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.
We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First
compute qa = min

∑

b Habxb. Note that from here on we
will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑

a(qa + ca)xa as a lower bound for
cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.
The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problemswithout changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requiresO(n2) time.

Dense corrrespondence

Source: Deva Ramanan



Example: license plate recognition

Source: Deva Ramanan



Example: product recognition

Google Glass

Source: Deva Ramanan



Motivation

Which of these patches are easier to match?

Why? How can we mathematically operationalize this?

Source: Deva Ramanan



Corner Detector: Basic Idea

“flat” region: 
no change in any 
direction

“edge”: 
no change along the 
edge direction

“corner”: 
significant change in 
all directions

Defn: points are “matchable” if small shifts always produce a large SSD error

Source: Deva Ramanan



Ex0,y0(u, v) =
�

(x,y)�W (x0,y0)

[I(x + u, y + v)� I(x, y)]2

The math

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

cornerness(x0, y0) = min
u,v

Ex0,y0(u, v)

Why can’t this be right?
Source: Deva Ramanan
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Ex0,y0(u, v) =
�

(x,y)�W (x0,y0)

[I(x + u, y + v)� I(x, y)]2

The math

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

cornerness(x0, y0) = min
u,v

Ex0,y0(u, v)
u2 + v2 = 1

Source: Deva Ramanan



Background: taylor series expansion

f(x+ u) = f(x) +
@f(x)

@x
u+

1

2

@f(x)

@xx
u2 +Higher Order Terms

Approximation of  f(x) = ex  at x=0 

Why are low-order expansions reasonable?  
Underyling smoothness of real-world signals

Source: Deva Ramanan

log(x + 1)



Multivariate taylor series
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Source: Deva Ramanan



Consider shifting the window W by (u,v) 
• how do the pixels in W change? 
• compare each pixel before and after by 

summing up the squared differences 
• this defines an “error” of E(u,v):

Feature detection:  the math

W
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Source: Deva Ramanan



The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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James Hays

A = ∑
(x,y)∈W
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the eigenvalues,
and the orientation is determined by a rotation matrix 𝑅.

direction of the 
slowest change

direction of the 
fastest change
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(Omin)-1/2
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Diagonalization of M:

James Hays
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Classification of image points using eigenvalues of M

O1

O2

“Corner”
O1 and O2 are large,
O1 ~ O2;
E increases in all 
directions

O1 and O2 are small;
E is almost constant 
in all directions

“Edge” 
O1 >> O2

“Edge” 
O2 >> O1

“Flat” 
region

Source: Deva Ramanan



Back to corner(ness)

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

Corner(x0, y0) = min
u2+v2=1

E(u, v)

E(u, v) =
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⇤
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�
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�

Solution is given by minimum eigenvalue 
Implies (xo,yo) is a good corner if minimum eigenvalue is large

(or alternatively, if both eigenvalues of ‘A’ are large)

Source: Deva Ramanan



– Det(A) = λminλmax  
– Trace(A) = λmin+λmax

Efficient computation
Computing eigenvalues (and eigenvectors) is expensive

Turns out that it’s easy to compute their sum (trace) and product (determinant)

(is proportional to the ratio of 
eigvenvalues and is 1 if they are equal)

(also favors large eigenvalues)

R = 4
Det(A)

Trace(A)2

R = Det(A)� ↵Trace(A)2

(trace = sum of diagonal entries)

Source: Deva Ramanan



Harris Corner Detector [Harris88]

1. Compute image derivatives (optionally, blur first).

2. Compute 𝑀 components
as squares of derivatives.

3. Gaussian filter g() with width s

𝐼𝑥 𝐼𝑦

𝑔(𝐼𝑥2) 𝑔(𝐼𝑦2) 𝑔(𝐼𝑥 ∘ 𝐼𝑦)

4. Compute cornerness

𝑅 5. Threshold on 𝐶 to pick high cornerness

6. Non-maxima suppression to pick peaks.

James Hays

0. Input image
We want to compute M at each pixel.

𝐼

𝐼𝑥𝑦𝐼𝑥2 𝐼𝑦2

𝐶 = det 𝑀 − 𝛼 trace 𝑀 2

= 𝑔 𝐼𝑥2 ∘ 𝑔 𝐼𝑦2 − 𝑔 𝐼𝑥 ∘ 𝐼𝑦
2

−𝛼 𝑔 𝐼𝑥2 + 𝑔 𝐼𝑦2
2



Harris Detector: Steps

Source: Deva Ramanan



Harris Detector: Steps
Compute corner response 𝐶

Source: Deva Ramanan



Harris Detector: Steps
Find points with large corner response: 𝐶 > threshold

Source: Deva Ramanan



Harris Detector: Steps
Take only the points of local maxima of 𝐶

Source: Deva Ramanan



Harris Detector: Steps

Source: Deva Ramanan



Scale and rotation invariance

Will interest point detector still fire on rotated & scaled images?

Source: Deva Ramanan



Rotation invariance (?)

Are eigenvector stable under rotations? 
Are eigenvalues stable under rotations?

No 
Yes

Source: Deva Ramanan



Image rotation

Second moment ellipse rotates but its shape 
(i.e., eigenvalues) remains the same.

Corner location is covariant w.r.t. rotation

James Hays



Scale invariance?

Are eigenvector stable under scalings? 
Are eigenvalues stable under scalings?

Yes 
No

Source: Deva Ramanan



Scaling

All points will 
be classified 
as edges

Corner

Corner location is not covariant to scaling!
James Hays



Automatic Scale Selection

K. Grauman, B. Leibe
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How to find patch sizes at which f response is equal?

What is a good f ?



Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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What Is A Useful Signature Function f ?
• “Blob” detector is common for corners

– - Laplacian (2nd derivative) of Gaussian (LoG)

K. Grauman, B. Leibe

Image blob size
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Find local maxima in position-scale space

K. Grauman, B. Leibe

V
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V3
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V5

� List of
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Find maxima



Approximate LoG with Difference-of-Gaussian (DoG).

1. Blur image with   σ Gaussian kernel
2. Blur image with kσ Gaussian kernel
3. Subtract 2. from 1.

Alternative approach

K. Grauman, B. Leibe
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Find local maxima in position-scale space of DoG

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian
• Larger circles = larger scale
• Descriptors with maximal scale response

K. Grauman, B. Leibe



Core visual understanding task:  
finding correspondences between images

(a) incline L.jpg (img1) (b) incline R.jpg (img2) (c) img2 warped to img1’s frame

Figure 5: Example output for Q6.1: Original images img1 and img2 (left and center) and
img2 warped to fit img1 (right). Notice that the warped image clips out of the image. We
will fix this in Q6.2

H2to1=computeH(p1,p2)

Inputs: p1 and p2 should be 2⇥N matrices of corresponding (x, y)T coordinates
between two images.
Outputs: H2to1 should be a 3⇥ 3 matrix encoding the homography that best matches
the linear equation derived above for Equation 8 (in the least squares sense). Hint:

Remember that a homography is only determined up to scale. The Matlab functions
eig() or svd() will be useful. Note that this function can be written without an
explicit for-loop over the data points.

6 Stitching it together: Panoramas (30 pts)

We can also use homographies to create a panorama image from multiple views of the same
scene. This is possible for example when there is no camera translation between the views
(e.g., only rotation about the camera center), as we saw in Q4.2.

First, you will generate panoramas using matched point correspondences between images
using the BRIEF matching you implemented in Q2.4. We will assume that there is no error
in your matched point correspondences between images (Although there might be some
errors).

In the next section you will extend the technique to use (potentially noisy) keypoint
matches.

You will need to use the provided function warp im=warpH(im, H, out size), which
warps image im using the homography transform H. The pixels in warp_im are sampled
at coordinates in the rectangle (1, 1) to (out_size(2), out_size(1)). The coordinates of
the pixels in the source image are taken to be (1, 1) to (size(im,2), size(im,1)) and
transformed according to H.

• Q6.1 (15pts) In this problem you will implement and use the function (stub provided
in matlab/imageStitching.m):

[panoImg] = imageStitching(img1, img2, H2to1)

on two images from the Dusquesne incline. This function accepts two images and the
output from the homography estimation function. This function will:
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Figure 6: Final panorama view. With homography estimated with RANSAC.

• a folder matlab containing all the .m and .mat files you were asked to write and
generate

• a pdf named writeup.pdf containing the results, explanations and images asked for
in the assignment along with to the answers to the questions on homographies.

Submit all the code needed to make your panorama generator run. Make sure all the .m

files that need to run are accessable from the matlab folder without any editing of the path
variable. If you downloaded and used a feature detector for the extra credit, include the
code with your submission and mention it in your writeup. You may leave the data folder
in your submission, but it is not needed. Please zip your homework as usual and submit it
using blackboard.

Appendix: Image Blending

Note: This section is not for credit and is for informational purposes only.

For overlapping pixels, it is common to blend the values of both images. You can sim-
ply average the values but that will leave a seam at the edges of the overlapping images.
Alternatively, you can obtain a blending value for each image that fades one image into the
other. To do this, first create a mask like this for each image you wish to blend:

mask = zeros(size(im,1), size(im,2));

mask(1,:) = 1; mask(end,:) = 1; mask(:,1) = 1; mask(:,end) = 1;

mask = bwdist(mask, ’city’);

mask = mask/max(mask(:));

The function bwdist computes the distance transform of the binarized input image, so this
mask will be zero at the borders and 1 at the center of the image. You can warp this mask
just as you warped your images. How would you use the mask weights to compute a linear
combination of the pixels in the overlap region? Your function should behave well where
one or both of the blending constants are zero.

13
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Coordinate frames

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)

Source: Deva Ramanan



Find dominant orientation

Compute gradients for all pixels in patch. Histogram (bin) gradients by orientation

0 2π

(I prefer this because you can look for multiple peaks)

Source: Deva Ramanan



Appearance descriptors

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)
 

Source: Deva Ramanan



point and oriented along the orientation selected in the
previous section. The size of this window is 20s. Examples
of such square regions are illustrated in figure 11.

Fig. 11. Detail of the Gra�ti scene showing the size of the oriented
descriptor window at di↵erent scales.

The region is split up regularly into smaller 4⇥ 4 square
sub-regions. This preserves important spatial information.
For each sub-region, we compute Haar wavelet responses
at 5⇥5 regularly spaced sample points. For reasons of sim-
plicity, we call dx the Haar wavelet response in horizontal
direction and dy the Haar wavelet response in vertical di-
rection (filter size 2s), see figure 9 again. “Horizontal” and
“vertical” here is defined in relation to the selected inter-
est point orientation (see figure 12). 1 To increase the ro-
bustness towards geometric deformations and localisation
errors, the responses dx and dy are first weighted with a
Gaussian (� = 3.3s) centred at the interest point.

Fig. 12. To build the descriptor, an oriented quadratic grid with
4⇥4 square sub-regions is laid over the interest point (left). For each
square, the wavelet responses are computed. The 2⇥ 2 sub-divisions
of each square correspond to the actual fields of the descriptor.
These are the sums dx, |dx|, dy, and |dy|, computed relatively to the
orientation of the grid (right).

Then, the wavelet responses dx and dy are summed
up over each sub-region and form a first set of entries

1 For e�ciency reasons, the Haar wavelets are calculated in the
unrotated image and the responses are then interpolated, instead of
actually rotating the image.

in the feature vector. In order to bring in information
about the polarity of the intensity changes, we also ex-
tract the sum of the absolute values of the responses, |dx|

and |dy|. Hence, each sub-region has a four-dimensional
descriptor vector v for its underlying intensity structure
v = (

P
dx,

P
dy,

P
|dx|,

P
|dy|). Concatenating this for

all 4 ⇥ 4 sub-regions, this results in a descriptor vector of
length 64. The wavelet responses are invariant to a bias in
illumination (o↵set). Invariance to contrast (a scale factor)
is achieved by turning the descriptor into a unit vector.

Fig. 13. The descriptor entries of a sub-region represent the nature
of the underlying intensity pattern. Left: In case of a homogeneous
region, all values are relatively low. Middle: In presence of frequencies
in x direction, the value of

P
|dx| is high, but all others remain low.

If the intensity is gradually increasing in x direction, both valuesP
dx and

P
|dx| are high.

Figure 13 shows the properties of the descriptor for three
distinctively di↵erent image intensity patterns within a
sub-region. One can imagine combinations of such local in-
tensity patterns, resulting in a distinctive descriptor.

SURF is, up to some point, similar in concept as SIFT,
in that they both focus on the spatial distribution of gradi-
ent information. Nevertheless, SURF outperforms SIFT in
practically all cases, as shown in Section 5. We believe this
is due to the fact that SURF integrates the gradient infor-
mation within a subpatch, whereas SIFT depends on the
orientations of the individual gradients. This makes SURF
less sensitive to noise, as illustrated in the example of Fig-
ure 14.

Fig. 14. Due to the global integration of SURF’s descriptor, it stays
more robust to various image perturbations than the more locally
operating SIFT descriptor.

In order to arrive at these SURF descriptors, we exper-
imented with fewer and more wavelet features, second or-
der derivatives, higher-order wavelets, PCA, median val-
ues, average values, etc. From a thorough evaluation, the
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Computing the SIFT Descriptor
Histograms of gradient directions over spatial regions

\
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Post-processing

1. Rescale 128-dim vector to have unit norm

2. Clip high values

“invariant to linear scalings of intensity”

x =
x

||x|| , x 2 R128

approximate binarization allows for for flat 
patches with small gradients to remain stable

x := min(x, .2)

x :=
x

||x||

Source: Deva Ramanan



Evaluation
Historic problem in computer vision: 

“wide-baseline matching” 

Source: Deva Ramanan
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Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000
keypoints as a function of width of the n × n keypoint descriptor and the number of orientations in
each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and
addition of 4% noise.

6.3 Sensitivity to affine change

The sensitivity of the descriptor to affine change is examined in Figure 9. The graph shows
the reliability of keypoint location and scale selection, orientation assignment, and nearest-
neighbor matching to a database as a function of rotation in depth of a plane away from a
viewer. It can be seen that each stage of computation has reduced repeatability with increas-
ing affine distortion, but that the final matching accuracy remains above 50% out to a 50
degree change in viewpoint.

To achieve reliable matching over a wider viewpoint angle, one of the affine-invariant
detectors could be used to select and resample image regions, as discussed in Section 2. As
mentioned there, none of these approaches is truly affine-invariant, as they all start from initial
feature locations determined in a non-affine-invariant manner. In what appears to be the most
affine-invariant method, Mikolajczyk (2002) has proposed and run detailed experiments with
the Harris-affine detector. He found that its keypoint repeatability is below that given here out
to about a 50 degree viewpoint angle, but that it then retains close to 40% repeatability out to
an angle of 70 degrees, which provides better performance for extreme affine changes. The
disadvantages are a much higher computational cost, a reduction in the number of keypoints,
and poorer stability for small affine changes due to errors in assigning a consistent affine
frame under noise. In practice, the allowable range of rotation for 3D objects is considerably
less than for planar surfaces, so affine invariance is usually not the limiting factor in the
ability to match across viewpoint change. If a wide range of affine invariance is desired, such
as for a surface that is known to be planar, then a simple solution is to adopt the approach of
Pritchard and Heidrich (2003) in which additional SIFT features are generated from 4 affine-
transformed versions of the training image corresponding to 60 degree viewpoint changes.
This allows for the use of standard SIFT features with no additional cost when processing
the image to be recognized, but results in an increase in the size of the feature database by a
factor of 3.
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What made this work? Exhaustive evaluation of hyper-parameters on annotated dataset

k

(a) (b)

(c) (d)
Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying
a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain
following an additional threshold on ratio of principal curvatures.

As suggested by Brown, the Hessian and derivative of D are approximated by using dif-
ferences of neighboring sample points. The resulting 3x3 linear system can be solved with
minimal cost. If the offset x̂ is larger than 0.5 in any dimension, then it means that the ex-
tremum lies closer to a different sample point. In this case, the sample point is changed and
the interpolation performed instead about that point. The final offset x̂ is added to the location
of its sample point to get the interpolated estimate for the location of the extremum.

The function value at the extremum, D(x̂), is useful for rejecting unstable extrema with
low contrast. This can be obtained by substituting equation (3) into (2), giving

D(x̂) = D +
1

2

∂D

∂x

T

x̂.

For the experiments in this paper, all extrema with a value of |D(x̂)| less than 0.03 were
discarded (as before, we assume image pixel values in the range [0,1]).

Figure 5 shows the effects of keypoint selection on a natural image. In order to avoid too
much clutter, a low-resolution 233 by 189 pixel image is used and keypoints are shown as
vectors giving the location, scale, and orientation of each keypoint (orientation assignment is
described below). Figure 5 (a) shows the original image, which is shown at reduced contrast
behind the subsequent figures. Figure 5 (b) shows the 832 keypoints at all detected maxima
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Properties of SIFT
Extraordinarily robust matching technique 

• Can handle changes in viewpoint 
– Up to about 60 degree out of plane rotation 

• Can handle significant changes in illumination 
– Sometimes even day vs. night (below) 

• Fast and efficient—can run in real time 
• Lots of code available 

– http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT 



Dense sampling
• So far: Descriptors of patches centered at sparse 

interest points 
• But we can use the descriptors at any point 
• Common case:  

– Regularly sampled grid of points 
– Dense SIFT (or LBP, or…)

 
128-dim 
SIFT 
feature

Visual words 
from clusters in 
128-dim space

Source: Deva Ramanan



HOG
Compute SIFT descriptors on a grid equal to size of individual “cell”

In practice, re-optimize hyper-parameters (2x2 grid of cells, with each cell of 8x8 pixels)

Source: Deva Ramanan



Common visualization

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)
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Alternative global desciptor: Gist

     8   orientations 
     4   scales 
x 16   spatial bins 
 512   dimensions

Oliva and Torralba, 2001

1.Compute frequency energy (magnitude) at each 
spatial (x,y) location with gabor filters 

2. Average energy over 4x4 spatial grids

Source: Deva Ramanan
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What information is lost?



What information is lost?
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Human Vision HOG Vision

vs



The HOGgles Challenge

Clap your hands when you see a person
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Chair Detections
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Car Detections



Car Detections



•   Car

Why did the detector fail?


