Matching and Image
Alignment

Computer Vision
Fall 2018
Columbia University



Feature Matching

1. Find a set of
distinctive key-
points

2. Define a region
around each

' keypoint
A
s ;_ | 3. Extract and
e ?2 S W normalize the
e WS region content

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors

Slide credit: James Hays



SIFT Review



Corner Detector: Basic Idea
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“flat” region: “‘edge’: “‘corner’:
no change in any no change along the significant change in
direction edge direction all directions

Defn: points are “matchable” 1f small shifts always produce a large SSD error

Source: Deva Ramanan



Scaling
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Corner

All points will
be classified
as edges



What Is A Useful Signature Function f ?
* “Blob” detector is common for corners

— - Laplacian

(29 derivative) of Gaussian (LoG)
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K. Grauman, B. Leibe



Coordinate frames

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)

Source: Deva Ramanan



Find dominant orientation

Compute gradients for all pixels in patch. Histogram (bin) gradients by orientation

Source: Deva Ramanan



Computing the SIFT Descriptor

Histograms of gradient directions over spatial regions

Image gradients
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Source: Deva Ramanan
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Post-processing

Image gradients
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Keypoint descriptor

1. Rescale 128-dim vector to have unit norm

X

X = 7T

“invariant to linear scalings of intensity”

2. Clip high values
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approximate binarization allows for for flat
patches with small gradients to remain stable

Source: Deva Ramanan



Matching




Panoramas
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Slide credit: Olga Russakovsky



Gigapixel Images
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danielhartz.com



Look Into the Past

N AN ESSENRERENT

Olga Russakovsky

Slide cred



Can you find the matches?

NASA Mars Rover images

Slide credit: S. Lazebnik



NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Slide credit: S. Lazebnik



Discussion

Design a feature point matching scheme.

Two images, /, and /, e Ly

Two sets X, and X, of feature points
— Each feature point x, has a descriptor x, =

[x”,...,x]

Distance, bijective/injective/surjective, noise,

confidence, computational complexity,
generality...

Slide credit: James Hays



Distance Metric

* Euclidean distance:

d(p,q) = d(q,p) = \/(QI —p1)° 4+ (@2 —p2)* + -+ (o — Pn)’

— J i(%‘ —Pz')z-

=1

la—p| = \/(q—p)-(q—p)-

* Cosine similarity:
a-b = [|al,||b]l, cos 0

A-.B O = arccos(z-y/1x11y!)

A2 ] B2

similarity = cos(f) =

Wikipedia



Matching Ambiguity

Locally, feature matches
are ambiguous

=> need to fit a model to
find globally consistent
matches

Slide credit: James Hays



Feature Matching

* Criteria 1:

— Compute distance in feature space, e.g., Euclidean
distance between 128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)

* Problems:
— Does everything have a match?

Slide credit: James Hays



Feature Matching

* Criteria 2:

— Compute distance in feature space, e.g., Euclidean
distance between 128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)
— lgnore anything higher than threshold (no match!)

* Problems:
— Threshold is hard to pick

— Non-distinctive features could have lots of close
matches, only one of which is correct

Slide credit: James Hays



Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NNZ2) feature vector neighbor.

. NN1 .
e [fNN1=NN2, ratio ~ will be =1 -> matches too close.

e As NN1 << NN2, ratio kb tends to O.
NN2

Sorting by this ratio puts matches in order of confidence.
Threshold ratio — but how to choose?

Slide credit: James Hays



PDF

Nearest Neighbor Distance Ratio

 Lowe computed a probability distribution functions of ratios
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Ratio of distances (closest/next closest)

1

40,000 keypoints with hand-labeled ground truth

Ratio threshold
depends on your
application’s view on
the trade-off between
the number of false
positives and true
positives!

Lowe [JCV 2004



What i1s the transformation
between these images?




Transformation Models

Translation only -l

Rigid body (translate+rotate) - ’

Similarity (translate+rotate+scale) i = .

Affine B = ’

Homography (projective) B .




Homogenous Coordinates

Cartesian: Homogenous:

PZ(X,y) ﬁz(x,y,l)

Slide credit; Peter Corke



Homogenous Coordinates

Cartesian: Homogenous:
P=()C,y) P=(X,y,1)
Homogenous:

~J

P=(X}2)

Slide credit; Peter Corke



Homogenous Coordinates

Cartesian: Homogenous:
Cartesian: Homogenous:
Xy =
P — T’ T P — (xa ya Z)
£ <

Slide credit; Peter Corke



Lines and Points are Duals
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Point Equation of a Line:
£1p =0
ll)? -+ lzj} + 132 — O

~J)

¢ = (I, b, 1)

Slide credit; Peter Corke



Cross product of two points is a line:

2 = P1 X P>

Slide credit; Peter Corke



S

Cross product of two lines is a point:

p=1¢1x¢,

Slide credit; Peter Corke



Central Projection Model

P=(X,Y,Z
, ( )

Slide credit; Peter Corke



Central Projection Model

SRR

S O

Slide credit; Peter Corke



Central Projection Model

X f 0 0) /x
p=1|Y¥|= OfO(Y)
Z 00 1)\

What if the
camera moves?

Slide credit; Peter Corke



Review: 3D Transformations

3D translations 3D rotations
X X +t, X ri1 T2 T3] [ X
Y| +T =Y + Ly RlY | = [ro1 1roo 1793 Y
Z_ _Z—- tz_ _Z_ _7“31 '39 7“33_ _Z_

Slide credit;: Deva Ramanan



Change of Coordinate System
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world coordinate frame

Slide credit;: Deva Ramanan



Camera Projection
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Camera Camera World
Intrinsics Extrinsics Coordinates



Camera Matrix

Mapping points from the world to image coordinates is
matrix multiplication in homogenous coordinates

Cll C12 C13 C14 )é
— C2 1 C22 C23 C24 7
C3 | C3 2 C3 3 C34 ]

Nl Sl =<



Scale Invariance

X Ci1 G C3 Cy )é
VI=41Gy Gy Gy Gy 7
< Gy Gy Gz Gy | g
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X = — == y = — = —
Z Az Z AZ



Normalized Camera Matrix



Homography

1. Models perspective effects for a planar scene

P R

2. Models perspective effects from camera rotations
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Slide credit;: Deva Ramanan



PrOJectlon of 3D Plane

70
7 }AII points on the
/' plane have Z =0
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Slide credit; Peter Corke



Pr0|ect|on of 3D Plane

‘7‘()
’ }AII points on the
/' plane have Z =0
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Slide credit; Peter Corke



Planar Homography

3 7'0}
// All points on the

plane have Z =0
/ L=(XY,2)
{C}
| X Hy, H, Hy X X
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Z H,, H;, 1 1 1

Slide credit; Peter Corke



Two-views of Plane

If you know both H and (x1, y1),
what is (x2, y2)?

Slide credit;: Deva Ramanan



Two-views of Plane




Estimating Homography

Slide credit;: Deva Ramanan



Estimating Homography
(details)

T, [ hoo ho1 hoz | [ =
I | ~ .
wY; | = | hio h11 hi12 Y
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Slide credit; Antonio Torralba



Estimating Homography
(details)

hoo
ho1 o
r1 y1 1 0 O O —:1;’1:1,1 —z’lyl —l:'l hoo 0
O 0 0 21 »y1 1 —viz1 —-viv1 —v; h1o 0
: hi11 = :
tn yn 1 0 0 O —z2lxyp —zlyn —z, hio O
O O O zn yn 1 —yf,:z:,, —yfl'y,, —yfl hoo 0
! T hos BN
| hoo
A h 0
2n x 9 9 2n

Defines a least squares problem:  minimize ||Ah — 0|2

. Since his only defined up to scale, solve for unit vector h
- Solution: h = eigenvector of ATA with smallest eigenvalue
* Works with 4 or more points

Slide credit; Antonio Torralba



Rectification

AW




Rectification

AW




Rectification

LR “




Rectification

Slide credit; Peter Corke



v (pixels)

Warping

(600, 100)

100 200 300 400 500 600 700 800 900 1000

u (pixels)
600 741.86
H| 100 | = [ 50.285
1 0.98

u="757.000.v=>51.311

(757.000,51.311)

Slide credit: Peter Corke



Virtual Camera
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Slide credit; Peter Corke



Panoramas
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Slide credit: Olga Russakovsky



Special case of 2 views:
rotations about camera center

Slide credit;: Deva Ramanan



Derivation

Relation between 3D camera coordinates:

3D->2D projection:

Combining both:

A2
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Slide credit;: Deva Ramanan



Take-home points for homographies

Lo a b c| [z
Ay = |d e [f| |wn
1 g h i |1

If camera rotates about its center, then the 1images are related by a
homography 1rrespective of scene depth.

If the scene 1s planar, then 1mages from any two cameras are related
by a homography.

Homography mapping 1s a 3x3 matrix with 8 degrees of freedom.

Slide credit;: Deva Ramanan



VLFeat’s 800 most confident matches
among 10,000+ local features.

HI TR Y

H

“’gal -
T

.
Wk [

Which matches should we use to estimate homography?



Least squares: Robustness to noise

e Least squares fit to the red points:

-10F

-12

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Slide credit: James Hays



Least squares: Robustness to noise

e Least squares fit with an outlier:

-10F

-12

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Problem: squared error heavily penalizes outliers

Slide credit: James Hays



Robust least squares (to deal with outliers)

General approach:
minimize )
Z p(ui (xl., 6’); 0) u' =), (y,—mx,—b)’
u. (x;, ) —residual of it" point w.r.t. model parameters 6

o — robust function with scale parameter o

The robust function p
e Favors a configuration
with small residuals

e Constant penalty for large
residuals

pluio) =

g2 + u?

Slide from S. Savarese



Choosing the scale: Just right

-10-

-12-

-14 1 | 1 | 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

The effect of the outlier is minimized

Slide credit: James Hays



Choosing the scale: Too small

10} -

12k i

-14 1 | 1 | 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

The error value is almost the same for every
point and the fit is very poor

Slide credit: James Hays



Choosing the scale: Too large

10k -

-12L -

-14 1 | 1 | 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Behaves much the same as least squares

Slide credit: James Hays



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Slide credit: James Hays



RANSAC °

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.

Slide credit: James Hays



RANSAC °

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.

Here, we expect to see a line, but least-

squares fitting will produce the wrong result
due to strong outlier presence.

Slide credit: James Hays



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

| ] | ] [ ]
M A N (A . (J / . . (J . / . (J (J .

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays



RANSAC

N, =14

nliers

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays



RANSAC for alignment




RANSAC for alignment
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RANSAC for al

Slide cred

Deva Ramanan




Blending

Instead of blending high frequencies along
a straight line, blend along line of minimum
differences in image intensities

Slide credit: Olga Russakovsky



Blending

Moving object, simple blending => blur

Slide credit; Davis ‘98



Blending

Minimum-cost cut = no blur

Slide credit; Davis ‘98



