
Matching and Image
Alignment

Computer Vision
Fall 2018

Columbia University

6 : COS429 : 03.10.17 : Andras Ferencz

Review: Feature Matching

1. Find a set of

 distinctive key-

 points

3. Extract and

 normalize the

 region content

2. Define a region

 around each

 keypoint

4. Compute a local

 descriptor from the

 normalized region

5. Match local

 descriptors

Feature Matching

Slide credit: James Hays

SIFT Review

Corner Detector: Basic Idea

“flat” region: 
no change in any
direction

“edge”: 
no change along the
edge direction

“corner”: 
significant change in
all directions

Defn: points are “matchable” if small shifts always produce a large SSD error

Source: Deva Ramanan

Scaling

All points will
be classified
as edges

Corner

Corner location is not covariant to scaling!
James Hays

What Is A Useful Signature Function f ?
• “Blob” detector is common for corners

– - Laplacian (2nd derivative) of Gaussian (LoG)

K. Grauman, B. Leibe

Image blob size

S
ca

le
 s

pa
ce

Function
response

Coordinate frames

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)

Source: Deva Ramanan

Find dominant orientation

Compute gradients for all pixels in patch. Histogram (bin) gradients by orientation

0 2π

(I prefer this because you can look for multiple peaks)

Source: Deva Ramanan

point and oriented along the orientation selected in the
previous section. The size of this window is 20s. Examples
of such square regions are illustrated in figure 11.

Fig. 11. Detail of the Gra�ti scene showing the size of the oriented
descriptor window at di↵erent scales.

The region is split up regularly into smaller 4⇥ 4 square
sub-regions. This preserves important spatial information.
For each sub-region, we compute Haar wavelet responses
at 5⇥5 regularly spaced sample points. For reasons of sim-
plicity, we call dx the Haar wavelet response in horizontal
direction and dy the Haar wavelet response in vertical di-
rection (filter size 2s), see figure 9 again. “Horizontal” and
“vertical” here is defined in relation to the selected inter-
est point orientation (see figure 12). 1 To increase the ro-
bustness towards geometric deformations and localisation
errors, the responses dx and dy are first weighted with a
Gaussian (� = 3.3s) centred at the interest point.

Fig. 12. To build the descriptor, an oriented quadratic grid with
4⇥4 square sub-regions is laid over the interest point (left). For each
square, the wavelet responses are computed. The 2⇥ 2 sub-divisions
of each square correspond to the actual fields of the descriptor.
These are the sums dx, |dx|, dy, and |dy|, computed relatively to the
orientation of the grid (right).

Then, the wavelet responses dx and dy are summed
up over each sub-region and form a first set of entries

1 For e�ciency reasons, the Haar wavelets are calculated in the
unrotated image and the responses are then interpolated, instead of
actually rotating the image.

in the feature vector. In order to bring in information
about the polarity of the intensity changes, we also ex-
tract the sum of the absolute values of the responses, |dx|

and |dy|. Hence, each sub-region has a four-dimensional
descriptor vector v for its underlying intensity structure
v = (

P
dx,

P
dy,

P
|dx|,

P
|dy|). Concatenating this for

all 4 ⇥ 4 sub-regions, this results in a descriptor vector of
length 64. The wavelet responses are invariant to a bias in
illumination (o↵set). Invariance to contrast (a scale factor)
is achieved by turning the descriptor into a unit vector.

Fig. 13. The descriptor entries of a sub-region represent the nature
of the underlying intensity pattern. Left: In case of a homogeneous
region, all values are relatively low. Middle: In presence of frequencies
in x direction, the value of

P
|dx| is high, but all others remain low.

If the intensity is gradually increasing in x direction, both valuesP
dx and

P
|dx| are high.

Figure 13 shows the properties of the descriptor for three
distinctively di↵erent image intensity patterns within a
sub-region. One can imagine combinations of such local in-
tensity patterns, resulting in a distinctive descriptor.

SURF is, up to some point, similar in concept as SIFT,
in that they both focus on the spatial distribution of gradi-
ent information. Nevertheless, SURF outperforms SIFT in
practically all cases, as shown in Section 5. We believe this
is due to the fact that SURF integrates the gradient infor-
mation within a subpatch, whereas SIFT depends on the
orientations of the individual gradients. This makes SURF
less sensitive to noise, as illustrated in the example of Fig-
ure 14.

Fig. 14. Due to the global integration of SURF’s descriptor, it stays
more robust to various image perturbations than the more locally
operating SIFT descriptor.

In order to arrive at these SURF descriptors, we exper-
imented with fewer and more wavelet features, second or-
der derivatives, higher-order wavelets, PCA, median val-
ues, average values, etc. From a thorough evaluation, the

7

Computing the SIFT Descriptor
Histograms of gradient directions over spatial regions

\

Source: Deva Ramanan

Post-processing

1. Rescale 128-dim vector to have unit norm

2. Clip high values

“invariant to linear scalings of intensity”

x =
x

||x|| , x 2 R128

approximate binarization allows for for flat
patches with small gradients to remain stable

x := min(x, .2)

x :=
x

||x||

Source: Deva Ramanan

Matching

PanoramasPanoramic Mosaics

Slide credit: Olga Russakovsky

Gigapixel ImagesGigapixel Images

danielhartz.com

Look into the Past

5 : COS429 : 03.10.17 : Andras Ferencz

Look into the Past

Slide credit: Olga Russakovsky

Can you find the matches?A hard feature matching problem

NASA Mars Rover images

Slide credit: S. Lazebnik

Answer below (look for tiny colored squares…)

NASA Mars Rover images
with SIFT feature matches 
Figure by Noah Snavely

Slide credit: S. Lazebnik

Think-Pair-Share
• Design a feature point matching scheme.
• Two images, I1 and I2

• Two sets X1 and X2 of feature points
– Each feature point x1 has a descriptor

• Distance, bijective/injective/surjective, noise,
confidence, computational complexity,
generality…

],,[)1()1(
11 dxx � x

Discussion

Slide credit: James Hays

Euclidean distance vs. Cosine Similarity
• Euclidean distance:

• Cosine similarity:

Wikipedia

Distance Metric

8 : COS429 : 03.10.17 : Andras Ferencz

Matching ambiguity

Locally, feature matches
are ambiguous

=> need to fit a model to
find globally consistent
matches

?

Matching Ambiguity

Slide credit: James Hays

Feature Matching

• Criteria 1:
– Compute distance in feature space, e.g., Euclidean

distance between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

• Problems:
– Does everything have a match?

Slide credit: James Hays

Feature Matching
• Criteria 2:

– Compute distance in feature space, e.g., Euclidean
distance between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)
– Ignore anything higher than threshold (no match!)

• Problems:
– Threshold is hard to pick
– Non-distinctive features could have lots of close

matches, only one of which is correct

Slide credit: James Hays

Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NN2) feature vector neighbor.

• If NN1 ≈ NN2, ratio 𝑁𝑁1
𝑁𝑁2

will be ≈ 1 -> matches too close.

• As NN1 << NN2, ratio 𝑁𝑁1
𝑁𝑁2

tends to 0.

Sorting by this ratio puts matches in order of confidence.
Threshold ratio – but how to choose?

Slide credit: James Hays

Nearest Neighbor Distance Ratio
• Lowe computed a probability distribution functions of ratios
• 40,000 keypoints with hand-labeled ground truth

Lowe IJCV 2004

Ratio threshold
depends on your
application’s view on
the trade-off between
the number of false
positives and true
positives!

What is the transformation
between these images?

Transformation Models2D Transformation Models

• Translation only

• Rigid body (translate+rotate)

• Similarity (translate+rotate+scale)

• AIne

• Homography (projective)

Homogenous Coordinates

P = (x, y)
Cartesian:

P̃ = (x, y,1)
Homogenous:

Slide credit: Peter Corke

Homogenous Coordinates

P = (x, y)
Cartesian:

P̃ = (x, y,1)
Homogenous:

P̃ = (x̃, ỹ, z̃)

Homogenous:

Slide credit: Peter Corke

Homogenous Coordinates

P = (x, y)
Cartesian:

P̃ = (x, y,1)
Homogenous:

P̃ = (x̃, ỹ, z̃)P = (x̃
z̃

,
ỹ
z̃)

Cartesian: Homogenous:

Slide credit: Peter Corke

Lines and Points are Duals

ℓ̃ = (l1, l2, l3)

p̃ = (x̃, ỹ, z̃)

ℓ̃Tp̃ = 0
Point Equation of a Line:

l1x̃ + l2ỹ + l3z̃ = 0

Slide credit: Peter Corke

p̃1 = (x̃1, ỹ1, z̃1)

Cross product of two points is a line:

ℓ̃ = p̃1 × p̃2

p̃2 = (x̃2, ỹ2, z̃2)

ℓ̃

Slide credit: Peter Corke

Cross product of two lines is a point:

p̃ = ℓ̃1 × ℓ̃2

ℓ̃1

ℓ̃2p̃

Slide credit: Peter Corke

Central Projection Model

f

Slide credit: Peter Corke

Central Projection Model

f

p =
x̃
ỹ
z̃

=
f 0 0
0 f 0
0 0 1

(
X
Y
Z)

Slide credit: Peter Corke

f

p =
x̃
ỹ
z̃

=
f 0 0
0 f 0
0 0 1

(
X
Y
Z)

Slide credit: Peter Corke

Central Projection Model

What if the

camera moves?

Review: 3D Transformations

Slide credit: Deva Ramanan

Change of Coordinate System

Slide credit: Deva Ramanan

Camera Projection

x̃
ỹ
z̃

=
f 0 0
0 f 0
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tx

X
Y
Z
1

World

Coordinates

Camera

Extrinsics

Camera

Intrinsics

Camera Matrix

x̃
ỹ
z̃

=
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

X
Y
Z
1

Mapping points from the world to image coordinates is

matrix multiplication in homogenous coordinates

Scale Invariance

x̃
ỹ
z̃

= λ
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

X
Y
Z
1

x =
x̃
z̃

=
λx̃
λz̃

y =
ỹ
z̃

=
λỹ
λz̃

Normalized Camera Matrix

x̃
ỹ
z̃

=
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 1

X
Y
Z
1

Homography

Slide credit: Deva Ramanan

Projection of 3D Plane
All points on the

plane have Z = 0

x̃
ỹ
z̃

=
C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 1

X
Y
0
1

Slide credit: Peter Corke

Projection of 3D Plane
All points on the

plane have Z = 0

x̃
ỹ
z̃

=
C11 C12 0 C14

C21 C22 0 C24

C31 C32 0 1

X
Y
0
1

Slide credit: Peter Corke

All points on the

plane have Z = 0

x̃
ỹ
z̃

=
H11 H12 H14
H21 H22 H24

H31 H32 1 (
X
Y
1) = H (

X
Y
1)

Planar Homography

Slide credit: Peter Corke

Two-views of Plane

x̃1
ỹ1
z̃1

= H1 (
X
Y
1)

x̃2
ỹ2
z̃2

= H2 (
X
Y
1)

If you know both H and (x1, y1),

what is (x2, y2)?

Slide credit: Deva Ramanan

Two-views of Plane

x̃2
ỹ2
z̃2

= H2H−1
1

x̃1
ỹ1
z̃1

x̃1
ỹ1
z̃1

= H1 (
X
Y
1)

x̃2
ỹ2
z̃2

= H2 (
X
Y
1)

Slide credit: Deva Ramanan

Estimating Homography

How many corresponding points do you need to estimate H?

x̃2
ỹ2
z̃2

= H
x̃1
ỹ1
z̃1

Slide credit: Deva Ramanan

Estimating Homography
(details)

Slide credit: Antonio Torralba

Estimating Homography
(details)

Slide credit: Antonio Torralba

Rectification

Slide credit: Peter Corke

Rectification

Slide credit: Peter Corke

Rectification

Slide credit: Peter Corke

Rectification

Slide credit: Peter Corke

Warping

Slide credit: Peter Corke

Virtual Camera

Slide credit: Peter Corke

PanoramasPanoramic Mosaics

Slide credit: Olga Russakovsky

Special case of 2 views:
rotations about camera center

LECTURE 4. PLANAR SCENES AND HOMOGRAPHY 5

cues (parallax) can only be recovered when T is nonzero. Looking at the
homography equation, the limit of H as d approaches infinity is R. Thus any
pair of images of an arbitrary scene captured by a purely rotating camera is
related by a planar homography.

A planar panorama can be constructed by capturing many overlapping
images at di↵erent rotations, picking an image to be a reference, and then
finding corresponding points between the overlapping images. The pairwise
homographies are derived from the corresponding points, forming a mosaic
that typically is shaped like a “bow-tie,” as images farther away from the
reference are warped outward to fit the homography. The figure below is
from Pollefeys and Hartley & Zisserman.

4.7. Second Derivation of Homography Constraint

The homography constraint, element by element, in homogenous coordinates
is as follows:

2

4
x2

y2

z2

3

5 =

2

4
H11 H12 H13

H21 H22 H23

H31 H32 H33

3

5

2

4
x1

y1

z1

3

5 , x2 ⇠ Hx1

In inhomogenous coordinates (x0
2 = x2/z2 and y

0
2 = y2/z2),

Can be modeled as planar transformations, regardless of scene geometry!

(a) incline L.jpg (img1) (b) incline R.jpg (img2) (c) img2 warped to img1’s frame

Figure 5: Example output for Q6.1: Original images img1 and img2 (left and center) and
img2 warped to fit img1 (right). Notice that the warped image clips out of the image. We
will fix this in Q6.2

H2to1=computeH(p1,p2)

Inputs: p1 and p2 should be 2⇥N matrices of corresponding (x, y)T coordinates
between two images.
Outputs: H2to1 should be a 3⇥ 3 matrix encoding the homography that best matches
the linear equation derived above for Equation 8 (in the least squares sense). Hint:

Remember that a homography is only determined up to scale. The Matlab functions
eig() or svd() will be useful. Note that this function can be written without an
explicit for-loop over the data points.

6 Stitching it together: Panoramas (30 pts)

We can also use homographies to create a panorama image from multiple views of the same
scene. This is possible for example when there is no camera translation between the views
(e.g., only rotation about the camera center), as we saw in Q4.2.

First, you will generate panoramas using matched point correspondences between images
using the BRIEF matching you implemented in Q2.4. We will assume that there is no error
in your matched point correspondences between images (Although there might be some
errors).

In the next section you will extend the technique to use (potentially noisy) keypoint
matches.

You will need to use the provided function warp im=warpH(im, H, out size), which
warps image im using the homography transform H. The pixels in warp_im are sampled
at coordinates in the rectangle (1, 1) to (out_size(2), out_size(1)). The coordinates of
the pixels in the source image are taken to be (1, 1) to (size(im,2), size(im,1)) and
transformed according to H.

• Q6.1 (15pts) In this problem you will implement and use the function (stub provided
in matlab/imageStitching.m):

[panoImg] = imageStitching(img1, img2, H2to1)

on two images from the Dusquesne incline. This function accepts two images and the
output from the homography estimation function. This function will:

10

Figure 6: Final panorama view. With homography estimated with RANSAC.

• a folder matlab containing all the .m and .mat files you were asked to write and
generate

• a pdf named writeup.pdf containing the results, explanations and images asked for
in the assignment along with to the answers to the questions on homographies.

Submit all the code needed to make your panorama generator run. Make sure all the .m

files that need to run are accessable from the matlab folder without any editing of the path
variable. If you downloaded and used a feature detector for the extra credit, include the
code with your submission and mention it in your writeup. You may leave the data folder
in your submission, but it is not needed. Please zip your homework as usual and submit it
using blackboard.

Appendix: Image Blending

Note: This section is not for credit and is for informational purposes only.

For overlapping pixels, it is common to blend the values of both images. You can sim-
ply average the values but that will leave a seam at the edges of the overlapping images.
Alternatively, you can obtain a blending value for each image that fades one image into the
other. To do this, first create a mask like this for each image you wish to blend:

mask = zeros(size(im,1), size(im,2));

mask(1,:) = 1; mask(end,:) = 1; mask(:,1) = 1; mask(:,end) = 1;

mask = bwdist(mask, ’city’);

mask = mask/max(mask(:));

The function bwdist computes the distance transform of the binarized input image, so this
mask will be zero at the borders and 1 at the center of the image. You can warp this mask
just as you warped your images. How would you use the mask weights to compute a linear
combination of the pixels in the overlap region? Your function should behave well where
one or both of the blending constants are zero.

13

Slide credit: Deva Ramanan

Derivation

LECTURE 4. PLANAR SCENES AND HOMOGRAPHY 5

cues (parallax) can only be recovered when T is nonzero. Looking at the
homography equation, the limit of H as d approaches infinity is R. Thus any
pair of images of an arbitrary scene captured by a purely rotating camera is
related by a planar homography.

A planar panorama can be constructed by capturing many overlapping
images at di↵erent rotations, picking an image to be a reference, and then
finding corresponding points between the overlapping images. The pairwise
homographies are derived from the corresponding points, forming a mosaic
that typically is shaped like a “bow-tie,” as images farther away from the
reference are warped outward to fit the homography. The figure below is
from Pollefeys and Hartley & Zisserman.

4.7. Second Derivation of Homography Constraint

The homography constraint, element by element, in homogenous coordinates
is as follows:

2

4
x2

y2

z2

3

5 =

2

4
H11 H12 H13

H21 H22 H23

H31 H32 H33

3

5

2

4
x1

y1

z1

3

5 , x2 ⇠ Hx1

In inhomogenous coordinates (x0
2 = x2/z2 and y

0
2 = y2/z2),

…

K2

2

4
X2

Y2

Z2

3

5 = R

2

4
X1

Y1

Z1

3

5

�2

2

4
x2

y2
1

3

5 =

2

4
f2 0 0
0 f2 0
0 0 1

3

5

2

4
X2

Y2

Z2

3

5

�

2

4
x2

y2
1

3

5 = K2RK�1
1

2

4
x1

y1
1

3

5

Relation between 3D camera coordinates:

3D->2D projection:

 
Combining both:

Slide credit: Deva Ramanan

Take-home points for homographies

• If camera rotates about its center, then the images are related by a
homography irrespective of scene depth.

• If the scene is planar, then images from any two cameras are related
by a homography.

• Homography mapping is a 3x3 matrix with 8 degrees of freedom.

�

2

4
x2

y2
1

3

5 =

2

4
a b c
d e f
g h i

3

5

2

4
x1

y1
1

3

5

Slide credit: Deva Ramanan

VLFeat’s 800 most confident matches
among 10,000+ local features.

Which matches should we use to estimate homography?

Least squares: Robustness to noise
• Least squares fit to the red points:

Slide credit: James Hays

Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Slide credit: James Hays

Robust least squares (to deal with outliers)
General approach:

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters ϴ

� �� �VTU ;,ii
i

xu¦

The robust function ρ
• Favors a configuration
with small residuals
• Constant penalty for large
residuals

¦
��

n

i ii bxmyu
1

22)(

Slide from S. Savarese

ρ – robust function with scale parameter σ

Choosing the scale: Just right

The effect of the outlier is minimized

Slide credit: James Hays

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small

Slide credit: James Hays

Choosing the scale: Too large

Behaves much the same as least squares

Slide credit: James Hays

RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Slide credit: James Hays

RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit
to a known model.

Slide credit: James Hays

RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit
to a known model.

Here, we expect to see a line, but least-
squares fitting will produce the wrong result
due to strong outlier presence.

Slide credit: James Hays

RANSAC

Algorithm:
1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Slide credit: James Hays

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide credit: James Hays

G

RANSAC

6 InliersN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Slide credit: James Hays

G

RANSAC

14 InliersN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Slide credit: James Hays

RANSAC for alignment

Slide credit: Deva Ramanan

RANSAC for alignment

Slide credit: Deva Ramanan

RANSAC for alignment

Slide credit:
Deva Ramanan

Blending

Slide credit: Olga Russakovsky

Blending

Slide credit: Davis ‘98

Blending

Slide credit: Davis ‘98

