Matching and Image Alignment

Computer Vision Fall 2018 Columbia University

Feature Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

SIFT Review

Corner Detector: Basic Idea

"flat" region: no change in any direction

"edge": no change along the edge direction "corner": significant change in all directions

Defn: points are "matchable" if small shifts always produce a large SSD error

All points will be classified as edges

What Is A Useful Signature Function f?

- "Blob" detector is common for corners
 - - Laplacian (2nd derivative) of Gaussian (LoG)

Coordinate frames

Represent each patch in a canonical scale and orientation (or general *affine* coordinate frame)

Find dominant orientation

Compute gradients for all pixels in patch. Histogram (bin) gradients by orientation

Computing the SIFT Descriptor

Histograms of gradient directions over spatial regions

Post-processing

1. Rescale 128-dim vector to have unit norm

$$x = \frac{x}{||x||}, \quad x \in R^{128}$$

"invariant to linear scalings of intensity"

2. Clip high values

$$x := \min(x, .2)$$
$$x := \frac{x}{||x||}$$

approximate binarization allows for for flat patches with small gradients to remain stable

Matching

Panoramas

Gigapixel Images

danielhartz.com

Look into the Past

Slide credit: Olga Russakovsky

Can you find the matches?

NASA Mars Rover images

Slide credit: S. Lazebnik

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Discussion

- Design a feature point matching scheme.
- Two images, *I*₁ and *I*₂

• Two sets X₁ and X₂ of feature points

- Each feature point $\mathbf{x_1}$ has a descriptor $\mathbf{x_1} = [x_1^{(1)}, \dots, x_d^{(1)}]$

 Distance, bijective/injective/surjective, noise, confidence, computational complexity, generality...

Distance Metric

• Euclidean distance:

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$
$$= \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$
$$\|\mathbf{q} - \mathbf{p}\| = \sqrt{(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p})}.$$
Cosine similarity:
$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\|_2 \|\mathbf{b}\|_2 \cos \theta$$

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$$

 $\theta = \arccos(x \cdot y / |x| |y|)$ $y \quad Wikipedia$

Matching Ambiguity

Locally, feature matches are ambiguous

=> need to fit a **model** to find globally consistent matches

Feature Matching

- Criteria 1:
 - Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
 - Match point to lowest distance (nearest neighbor)

- Problems:
 - Does everything have a match?

Feature Matching

- Criteria 2:
 - Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
 - Match point to lowest distance (nearest neighbor)
 - Ignore anything higher than threshold (no match!)

- Problems:
 - Threshold is hard to pick
 - Non-distinctive features could have lots of close matches, only one of which is correct

Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and secondclosest (NN2) feature vector neighbor.

If NN1 ≈ NN2, ratio ^{NN1}/_{NN2} will be ≈ 1 -> matches too close.
As NN1 << NN2, ratio ^{NN1}/_{NN2} tends to 0.

Sorting by this ratio puts matches in order of confidence. Threshold ratio – but how to choose?

Nearest Neighbor Distance Ratio

- Lowe computed a probability distribution functions of ratios
- 40,000 keypoints with hand-labeled ground truth

Ratio threshold depends on your application's view on the trade-off between the number of false positives and true positives!

What is the transformation between these images?

Transformation Models

- Translation only
- Rigid body (translate+rotate)
- Similarity (translate+rotate+scale)
- Affine
- Homography (projective)

Homogenous Coordinates

Homogenous Coordinates

Homogenous:

$$P = (\tilde{x}, \tilde{y}, \tilde{z})$$

Homogenous Coordinates

Lines and Points are Duals

 $\tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z})$

 $\tilde{\ell} = (l_1, l_2, l_3)$

Point Equation of a Line:

$$\tilde{\ell}^T \tilde{p} = 0$$
$$l_1 \tilde{x} + l_2 \tilde{y} + l_3 \tilde{z} = 0$$

Cross product of two points is a line:

$$\tilde{\ell} = \tilde{p}_1 \times \tilde{p}_2$$

$\tilde{\ell}_2$ \tilde{D} **Cross product of two lines is a point:**

$$\tilde{p} = \tilde{\ell}_1 \times \tilde{\ell}_2$$

Central Projection Model

With kind permission of Springer Science+Business Media

Central Projection Model

 $p = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$

With kind permission of Springer Science+Business Media

Central Projection Model

With kind permission of Springer Science+Business Media

Review: 3D Transformations

Slide credit: Deva Ramanan

Change of Coordinate System

$$R\begin{bmatrix}X\\Y\\Z\end{bmatrix} + T = \begin{bmatrix}r_{11} & r_{12} & r_{13} & t_x\\r_{21} & r_{22} & r_{23} & t_y\\r_{31} & r_{32} & r_{33} & t_z\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}$$

Slide credit: Deva Ramanan
Camera Projection

Camera Matrix

Mapping points from the world to image coordinates is matrix multiplication in homogenous coordinates

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Scale Invariance

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$x = \frac{\tilde{x}}{\tilde{z}} = \frac{\lambda \tilde{x}}{\lambda \tilde{z}} \qquad \qquad y = \frac{\tilde{y}}{\tilde{z}} = \frac{\lambda \tilde{y}}{\lambda \tilde{z}}$$

Normalized Camera Matrix

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Homography

1. Models perspective effects for a planar scene

2. Models perspective effects from camera rotations

Slide credit: Peter Corke

Two-views of Plane

$$\begin{pmatrix} \tilde{x}_1 \\ \tilde{y}_1 \\ \tilde{z}_1 \end{pmatrix} = H_1 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix} \qquad \qquad \qquad \begin{pmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{pmatrix} = H_2 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

If you know both H and (x1, y1), what is (x2, y2)?

Two-views of Plane

Slide credit: Deva Ramanan

Estimating Homography

How many corresponding points do you need to estimate H?

$$\begin{pmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{pmatrix} = H \begin{pmatrix} \tilde{x}_1 \\ \tilde{y}_1 \\ \tilde{z}_1 \end{pmatrix}$$

Slide credit: Deva Ramanan

Estimating Homography (details)

$$\begin{bmatrix} \mathbf{w} x_i' \\ \mathbf{w} y_i' \\ \mathbf{w} \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Slide credit: Antonio Torralba

Estimating Homography (details)

Defines a least squares problem: minimize $||Ah - 0||^2$

- Since h is only defined up to scale, solve for unit vector ĥ
- Solution: \hat{h} = eigenvector of A^TA with smallest eigenvalue
- Works with 4 or more points

Warping

Virtual Camera

Panoramas

Slide credit: Olga Russakovsky

Special case of 2 views: rotations about camera center

Can be modeled as planar transformations, regardless of scene geometry!

Derivation

3D->2D projection:

Combining both:

$$\lambda_{2} \begin{bmatrix} x_{2} \\ y_{2} \\ 1 \end{bmatrix} = \begin{bmatrix} f_{2} & 0 & 0 \\ 0 & f_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_{2} \\ Y_{2} \\ Z_{2} \end{bmatrix}$$
$$\dots$$
$$\lambda \begin{bmatrix} x_{2} \\ y_{2} \\ 1 \end{bmatrix} = K_{2}RK_{1}^{-1} \begin{bmatrix} x_{1} \\ y_{1} \\ 1 \end{bmatrix}$$

Slide credit: Deva Ramanan

Take-home points for homographies

$$\lambda \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

- If camera rotates about its center, then the images are related by a homography irrespective of scene depth.
- If the scene is planar, then images from any two cameras are related by a homography.
- Homography mapping is a 3x3 matrix with 8 degrees of freedom.

VLFeat's 800 most confident matches among 10,000+ local features.

Which matches should we use to estimate homography?

Least squares: Robustness to noise

• Least squares fit to the red points:

Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Slide credit: James Hays

Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \rho(u_i(x_i, \theta); \sigma) \qquad u^2 = \sum_{i=1}^n (y_i - mx_i - b)^2$$

 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ

 ρ – robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

$$\rho(u;\sigma)=\frac{u^2}{\sigma^2+u^2}$$

Slide from S. Savarese

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

This data is noisy, but we expect a good fit to a known model.

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

This data is noisy, but we expect a good fit to a known model.

Here, we expect to see a line, but leastsquares fitting will produce the wrong result due to strong outlier presence.

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

Algorithm:

- 1. Sample (randomly) the number of points s required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (s=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (s=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (*s*=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (*s*=2) 1.
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC for alignment

Slide credit: Deva Ramanan

RANSAC for alignment

Slide credit: Deva Ramanan

RANSAC for alignment

Slide credit: Deva Ramanan

Blending

Instead of blending high frequencies along a straight line, blend along line of minimum differences in image intensities

Blending

Moving object, simple blending => blur

Blending

Minimum-cost cut 📰 no blur