Matching and Image Alignment

Computer Vision
Fall 2018
Columbia University
Feature Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

Slide credit: James Hays
SIFT Review
Corner Detector: Basic Idea

“flat” region: no change in any direction

“edge”: no change along the edge direction

“corner”: significant change in all directions

Defn: points are “matchable” if small shifts always produce a large SSD error

Source: Deva Ramanan
Scaling

Corner

All points will be classified as edges
What Is A Useful Signature Function $f$?

- “Blob” detector is common for corners
  - Laplacian ($2^{\text{nd}}$ derivative) of Gaussian (LoG)

K. Grauman, B. Leibe
Coordinate frames

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)
Find dominant orientation

Compute gradients for all pixels in patch. Histogram (bin) gradients by orientation

Source: Deva Ramanan
Computing the SIFT Descriptor

Histograms of gradient directions over spatial regions

Image gradients

Source: Deva Ramanan
Post-processing

1. Rescale 128-dim vector to have unit norm

\[ x = \frac{x}{\|x\|}, \quad x \in \mathbb{R}^{128} \]

“invariant to linear scalings of intensity”

2. Clip high values

\[ x := \min(x, .2) \]

\[ x := \frac{x}{\|x\|} \]

approximate binarization allows for flat patches with small gradients to remain stable

Source: Deva Ramanan
Matching
Panoramas

Slide credit: Olga Russakovsky
Look into the Past

Slide credit: Olga Russakovsky
Can you find the matches?

NASA Mars Rover images

Slide credit: S. Lazebnik
NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely

Slide credit: S. Lazebnik
Discussion

• Design a feature point matching scheme.

• Two images, $I_1$ and $I_2$

• Two sets $X_1$ and $X_2$ of feature points
  – Each feature point $x_1$ has a descriptor $x_1 = [x_1^{(1)}, \ldots, x_d^{(1)}]$

• Distance, bijective/injective/surjective, noise, confidence, computational complexity, generality…

Slide credit: James Hays
Distance Metric

- **Euclidean distance:**
  \[
  d(p, q) = d(q, p) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \cdots + (q_n - p_n)^2}
  = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.
  \]
  \[
  \|q - p\| = \sqrt{(q - p) \cdot (q - p)}.
  \]

- **Cosine similarity:**
  \[
  a \cdot b = \|a\|_2 \|b\|_2 \cos \theta
  \]
  \[
  \text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\|_2 \|B\|_2}
  \]
  \[
  \theta = \arccos\left(\frac{x \cdot y}{|x||y|}\right)
  \]

Wikipedia
Matching Ambiguity

Locally, feature matches are ambiguous

=> need to fit a model to find globally consistent matches

Slide credit: James Hays
Feature Matching

• Criteria 1:
  – Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
  – Match point to lowest distance (nearest neighbor)

• Problems:
  – Does everything have a match?
Feature Matching

• Criteria 2:
  – Compute distance in feature space, e.g., Euclidean distance between 128-dim SIFT descriptors
  – Match point to lowest distance (nearest neighbor)
  – Ignore anything higher than threshold (no match!)

• Problems:
  – Threshold is hard to pick
  – Non-distinctive features could have lots of close matches, only one of which is correct
Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-closest (NN2) feature vector neighbor.

• If \( NN1 \approx NN2 \), ratio \( \frac{NN1}{NN2} \) will be \( \approx 1 \) -> matches too close.

• As \( NN1 << NN2 \), ratio \( \frac{NN1}{NN2} \) tends to 0.

Sorting by this ratio puts matches in order of confidence. Threshold ratio – but how to choose?

Slide credit: James Hays
Nearest Neighbor Distance Ratio

- Lowe computed a probability distribution functions of ratios
- 40,000 keypoints with hand-labeled ground truth

Ratio threshold depends on your application’s view on the trade-off between the number of false positives and true positives!
What is the transformation between these images?
Transformation Models

- Translation only
- Rigid body (translate+rotate)
- Similarity (translate+rotate+scale)
- Affine
- Homography (projective)
Homogenous Coordinates

Cartesian: \( P = (x, y) \)

Homogenous: \( \tilde{P} = (x, y, 1) \)

Slide credit: Peter Corke
Homogenous Coordinates

Cartesian: \( P = (x, y) \)

Homogenous: \( \tilde{P} = (x, y, 1) \)

Homogenous: \( \tilde{P} = (\tilde{x}, \tilde{y}, \tilde{z}) \)
Homogenous Coordinates

Cartesian:

\[ P = (x, y) \]

Homogenous:

\[ \tilde{P} = (x, y, 1) \]

Cartesian:

\[ P = \left( \frac{\tilde{x}}{\tilde{z}}, \frac{\tilde{y}}{\tilde{z}} \right) \]

Homogenous:

\[ \tilde{P} = (\tilde{x}, \tilde{y}, \tilde{z}) \]

Slide credit: Peter Corke
Lines and Points are Duals

\[ \tilde{\ell} = (l_1, l_2, l_3) \]

\[ \tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z}) \]

Point Equation of a Line:

\[ \tilde{\ell}^T \tilde{p} = 0 \]

\[ l_1 \tilde{x} + l_2 \tilde{y} + l_3 \tilde{z} = 0 \]

Slide credit: Peter Corke
Cross product of two points is a line:

\[ \tilde{\ell} = \tilde{p}_1 \times \tilde{p}_2 \]
Cross product of two lines is a point:
\[ \tilde{p} = \tilde{\ell}_1 \times \tilde{\ell}_2 \]
Central Projection Model
Central Projection Model

\[ p = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \]
Central Projection Model

What if the camera moves?

\[
p = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}
\]
Review: 3D Transformations

3D translations

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} + T = \begin{bmatrix}
X + t_x \\
Y + t_y \\
Z + t_z
\end{bmatrix}
\]

3D rotations

\[
R \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

\[
R \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} + T = \begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_x \\
r_{21} & r_{22} & r_{23} & t_y \\
r_{31} & r_{32} & r_{33} & t_z
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
Change of Coordinate System

\[ R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \]

Slide credit: Deva Ramanan
Camera Projection

\[
\begin{bmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{bmatrix}
= \begin{bmatrix}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_x \\
r_{21} & r_{22} & r_{23} & t_y \\
r_{31} & r_{32} & r_{33} & t_z
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]

- Camera Intrinsics
- Camera Extrinsics
- World Coordinates
Camera Matrix

Mapping points from the world to image coordinates is matrix multiplication in homogenous coordinates

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34}
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]
Scale Invariance

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} = \lambda
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34}
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]

\[
x = \frac{\tilde{x}}{\tilde{z}} = \frac{\lambda\tilde{x}}{\lambda\tilde{z}} \\
y = \frac{\tilde{y}}{\tilde{z}} = \frac{\lambda\tilde{y}}{\lambda\tilde{z}}
\]
Normalized Camera Matrix

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} = 
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]
Homography

1. Models perspective effects for a planar scene

2. Models perspective effects from camera rotations

Slide credit: Deva Ramanan
Projection of 3D Plane

All points on the plane have $Z = 0$

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
0 \\
1
\end{pmatrix}
\]
Projection of 3D Plane

All points on the plane have $Z = 0$

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} & 0 & C_{14} \\
C_{21} & C_{22} & 0 & C_{24} \\
C_{31} & C_{32} & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
0 \\
1
\end{pmatrix}
\]
Planar Homography

All points on the plane have $Z = 0$

\[
\begin{pmatrix}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{pmatrix}
= \begin{pmatrix}
H_{11} & H_{12} & H_{14} \\
H_{21} & H_{22} & H_{24} \\
H_{31} & H_{32} & 1
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
1
\end{pmatrix}
= H
\begin{pmatrix}
X \\
Y \\
1
\end{pmatrix}
\]
Two-views of Plane

\[
\begin{bmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{bmatrix} = H_1 \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}
\]

\[
\begin{bmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{bmatrix} = H_2 \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}
\]

If you know both \( H \) and \((x_1, y_1)\), what is \((x_2, y_2)\)?
Two-views of Plane

\[
\begin{align*}
\begin{pmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{pmatrix}
&= H_1 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix} \\
\begin{pmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{pmatrix}
&= H_2 \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix} \\
\begin{pmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{pmatrix}
&= H_2 H_1^{-1} \begin{pmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{pmatrix}
\end{align*}
\]
Estimating Homography

How many corresponding points do you need to estimate $H$?

\[
\begin{pmatrix}
\tilde{x}_2 \\
\tilde{y}_2 \\
\tilde{z}_2
\end{pmatrix} = H
\begin{pmatrix}
\tilde{x}_1 \\
\tilde{y}_1 \\
\tilde{z}_1
\end{pmatrix}
\]
Estimating Homography (details)

\[
\begin{bmatrix}
wx_i' \\
w y_i' \\
w
\end{bmatrix} \in \mathbb{R} \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\
0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i'
\end{bmatrix} \begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Estimating Homography (details)

\[
\begin{bmatrix}
  x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -y'_1 y_1 & -x'_1 \\
  0 & 0 & 0 & x_1 & y_1 & 1 & -x'_1 x_1 & -y'_1 y_1 & -y'_1 \\
  \vdots & \vdots \\
  x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -y'_n y_n & -x'_n \\
  0 & 0 & 0 & x_n & y_n & 1 & -x'_n x_n & -y'_n y_n & -y'_n
\end{bmatrix}
\begin{bmatrix}
  h_{00} \\
  h_{01} \\
  h_{02} \\
  h_{10} \\
  h_{11} \\
  h_{12} \\
  h_{20} \\
  h_{21} \\
  h_{22}
\end{bmatrix}
= \begin{bmatrix}
  0 \\
  0 \\
  \vdots \\
  0 \\
  0
\end{bmatrix}
\]

\[A = \begin{bmatrix}
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  \end{bmatrix}
\quad h = \begin{bmatrix}
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  \end{bmatrix}
\quad 0 = \begin{bmatrix}
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  & & & & & & & & \\
  \end{bmatrix}
\]

Defines a least squares problem: \(\text{minimize } \|Ah - 0\|^2\)

- Since \(h\) is only defined up to scale, solve for unit vector \(\hat{h}\)
- Solution: \(\hat{h} = \text{eigenvector of } A^TA\) with smallest eigenvalue
- Works with 4 or more points

Slide credit: Antonio Torralba
Rectification
Rectification

Slide credit: Peter Corke
Rectification
Rectification
Warping

\[ H \begin{pmatrix} 600 \\ 100 \\ 1 \end{pmatrix} = \begin{pmatrix} 741.86 \\ 50.285 \\ 0.98 \end{pmatrix} \]

\[ u = 757.000, \ v = 51.311 \]
Virtual Camera

\[ H_E \simeq R + \frac{t}{d} n^T \]
Panoramas
Special case of 2 views: rotations about camera center

Can be modeled as planar transformations, regardless of scene geometry!
Derivation

Relation between 3D camera coordinates:

\[
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix} = R
\begin{bmatrix}
X_1 \\
Y_1 \\
Z_1
\end{bmatrix}
\]

3D->2D projection:

\[
\begin{bmatrix}
x_2 \\
y_2 \\
1
\end{bmatrix} =
\begin{bmatrix}
f_2 & 0 & 0 \\
0 & f_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix}
\]

Combining both:

\[
\lambda \begin{bmatrix}
x_2 \\
y_2 \\
1
\end{bmatrix} = K_2 R K_1^{-1} \begin{bmatrix}
x_1 \\
y_1 \\
1
\end{bmatrix}
\]
Take-home points for homographies

\[
\lambda \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}
\]

- If camera rotates about its center, then the images are related by a homography irrespective of scene depth.

- If the scene is planar, then images from any two cameras are related by a homography.

- Homography mapping is a 3x3 matrix with 8 degrees of freedom.
VLFeat’s 800 most confident matches among 10,000+ local features.

Which matches should we use to estimate homography?
Least squares: Robustness to noise

• Least squares fit to the red points:
Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Slide credit: James Hays
Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_i \rho(u_i(x_i, \theta); \sigma)$$

$$u^2 = \sum_{i=1}^n (y_i - mx_i - b)^2$$

$$u_i(x_i, \theta)$$ – residual of i\textsuperscript{th} point w.r.t. model parameters $\Theta$

$\rho$ – robust function with scale parameter $\sigma$

The robust function $\rho$

- Favors a configuration with small residuals
- Constant penalty for large residuals

$$\rho(u; \sigma) = \frac{u^2}{\sigma^2 + u^2}$$
Choosing the scale: Just right

The effect of the outlier is minimized

Slide credit: James Hays
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Slide credit: James Hays
Choosing the scale: Too large

Behaves much the same as least squares
RANSAC

(RAN)dom SA(mple Consensus):

Fischler & Bolles in ‘81.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ’81.

This data is noisy, but we expect a good fit to a known model.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

This data is noisy, but we expect a good fit to a known model.

Here, we expect to see a line, but least-squares fitting will produce the wrong result due to strong outlier presence.
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ‘81.

Algorithm:

1. **Sample** (randomly) the number of points $s$ required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

**Repeat** 1-3 until the best model is found with high confidence
RANSAC

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (s=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

**Repeat** 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model \((s=2)\)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

**Repeat** 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

**Repeat** 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model ($s=2$)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC for alignment
RANSAC for alignment

Slide credit: Deva Ramanan
RANSAC for alignment
Blending

Instead of blending high frequencies along a straight line, blend along line of minimum differences in image intensities.
Blending

Moving object, simple blending => blur

Slide credit: Davis ‘98
Blending

Minimum-cost cut  no blur